L. Gurdev, T. Dreischuh, O. Vankov, E. Toncheva, L. Avramov, D. Stoyanov
{"title":"连续波激光束辐照散射介质辐射回波的空间强度分布","authors":"L. Gurdev, T. Dreischuh, O. Vankov, E. Toncheva, L. Avramov, D. Stoyanov","doi":"10.1117/12.2261412","DOIUrl":null,"url":null,"abstract":"Experimental measurements and theoretical description have been performed of the spatial intensity distribution of the backward radiative response of tissue-like Intralipid-20% dilutions in distilled water irradiated by a collimated near-infrared cw laser beam. The investigations performed are a first step toward a complete estimation of the feasibility and potentialities of a stationary one-sided linear-strategy biomedical tomography approach to detecting characteristic inclusions (inhomogeneities, say ill places) in homogeneous highly-scattering host media (healthy tissues). The experimental results obtained are in good agreement with the derived theoretical expressions that thus would be of importance for the development and numerical modeling of stationary tomography algorithms ensuring optimally accurate data processing and interpretation.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"41 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial intensity distribution of the radiative return from scattering media irradiated by a cw laser beam\",\"authors\":\"L. Gurdev, T. Dreischuh, O. Vankov, E. Toncheva, L. Avramov, D. Stoyanov\",\"doi\":\"10.1117/12.2261412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental measurements and theoretical description have been performed of the spatial intensity distribution of the backward radiative response of tissue-like Intralipid-20% dilutions in distilled water irradiated by a collimated near-infrared cw laser beam. The investigations performed are a first step toward a complete estimation of the feasibility and potentialities of a stationary one-sided linear-strategy biomedical tomography approach to detecting characteristic inclusions (inhomogeneities, say ill places) in homogeneous highly-scattering host media (healthy tissues). The experimental results obtained are in good agreement with the derived theoretical expressions that thus would be of importance for the development and numerical modeling of stationary tomography algorithms ensuring optimally accurate data processing and interpretation.\",\"PeriodicalId\":355156,\"journal\":{\"name\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"volume\":\"41 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2261412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2261412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial intensity distribution of the radiative return from scattering media irradiated by a cw laser beam
Experimental measurements and theoretical description have been performed of the spatial intensity distribution of the backward radiative response of tissue-like Intralipid-20% dilutions in distilled water irradiated by a collimated near-infrared cw laser beam. The investigations performed are a first step toward a complete estimation of the feasibility and potentialities of a stationary one-sided linear-strategy biomedical tomography approach to detecting characteristic inclusions (inhomogeneities, say ill places) in homogeneous highly-scattering host media (healthy tissues). The experimental results obtained are in good agreement with the derived theoretical expressions that thus would be of importance for the development and numerical modeling of stationary tomography algorithms ensuring optimally accurate data processing and interpretation.