融合方法与应用-综述

F. Francis, Maya Mohan
{"title":"融合方法与应用-综述","authors":"F. Francis, Maya Mohan","doi":"10.1109/ICCES45898.2019.9002396","DOIUrl":null,"url":null,"abstract":"Data fusion is the process in which integration of multiple data sources produce more consistent, efficient, and useful information than that provided by any of the individual data source. The fusion methods can be broadly classified with the help of class information. The fusion methods such as serial feature fusion, parallel feature fusion and canonical correlation analysis (CCA) does not contain any class information. That is, they are unsupervised fusion methods. The methods such as cluster CCA, Generalized Multiview Analysis, Linear Discriminant Analysis, Multiview Discriminant Analysis, Discriminative Multiple CCA, Locality Preserving CCA (LPCCA), BGLPCCA, MGLPCCA contain class information. Applications of each fusion methods are also taken into consideration.","PeriodicalId":348347,"journal":{"name":"2019 International Conference on Communication and Electronics Systems (ICCES)","volume":"65 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion Methods & Applications – A Survey\",\"authors\":\"F. Francis, Maya Mohan\",\"doi\":\"10.1109/ICCES45898.2019.9002396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data fusion is the process in which integration of multiple data sources produce more consistent, efficient, and useful information than that provided by any of the individual data source. The fusion methods can be broadly classified with the help of class information. The fusion methods such as serial feature fusion, parallel feature fusion and canonical correlation analysis (CCA) does not contain any class information. That is, they are unsupervised fusion methods. The methods such as cluster CCA, Generalized Multiview Analysis, Linear Discriminant Analysis, Multiview Discriminant Analysis, Discriminative Multiple CCA, Locality Preserving CCA (LPCCA), BGLPCCA, MGLPCCA contain class information. Applications of each fusion methods are also taken into consideration.\",\"PeriodicalId\":348347,\"journal\":{\"name\":\"2019 International Conference on Communication and Electronics Systems (ICCES)\",\"volume\":\"65 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Communication and Electronics Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES45898.2019.9002396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Communication and Electronics Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES45898.2019.9002396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据融合是这样一个过程:多个数据源的集成产生比任何单个数据源提供的信息更一致、更高效、更有用的信息。融合方法可以借助类信息进行广义分类。串行特征融合、并行特征融合和典型相关分析(CCA)等融合方法不包含任何类信息。也就是说,它们是无监督的融合方法。聚类CCA、广义多视图分析、线性判别分析、多视图判别分析、判别多重CCA、局部保持CCA (LPCCA)、BGLPCCA、MGLPCCA等方法包含了类信息。并对每种融合方法的应用进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion Methods & Applications – A Survey
Data fusion is the process in which integration of multiple data sources produce more consistent, efficient, and useful information than that provided by any of the individual data source. The fusion methods can be broadly classified with the help of class information. The fusion methods such as serial feature fusion, parallel feature fusion and canonical correlation analysis (CCA) does not contain any class information. That is, they are unsupervised fusion methods. The methods such as cluster CCA, Generalized Multiview Analysis, Linear Discriminant Analysis, Multiview Discriminant Analysis, Discriminative Multiple CCA, Locality Preserving CCA (LPCCA), BGLPCCA, MGLPCCA contain class information. Applications of each fusion methods are also taken into consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Library System Using Robotic Arm Road Crack Detection and Segmentation for Autonomous Driving Design and Simulation of Two Stage Sample and Hold Circuit with Low Power using Current Controlled Conveyor The PI Controllers and its optimal tuning for Load Frequency Control (LFC) of Hybrid Hydro-thermal Power Systems Low Power Hardware Based Real Time Music System and Digital Data Transmission Using FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1