基于多维Anderson-Darling统计量的频谱感知拟合优度检验

Sanjeev Gurugopinath, B. Samudhyatha
{"title":"基于多维Anderson-Darling统计量的频谱感知拟合优度检验","authors":"Sanjeev Gurugopinath, B. Samudhyatha","doi":"10.1109/IWSDA.2015.7458396","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-dimensional extension of the Anderson-Darling statistic based goodness-of-fit lest for spectrum sensing in a cognitive radio network with multiple nodes. A technique lo evaluate the optimal detection threshold that satisfies a constraint on the false-alarm probability is discussed. Assuming stationary and known noise statistics, we show that this detector, called as the K-sample Anderson-Darling statistic based detector, outperforms the well-known energy detector under various practically relevant primary signal models and channel fading models, through extensive Monte Carlo simulations.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"16 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-dimensional Anderson-Darling statistic based goodness-of-fit test for spectrum sensing\",\"authors\":\"Sanjeev Gurugopinath, B. Samudhyatha\",\"doi\":\"10.1109/IWSDA.2015.7458396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-dimensional extension of the Anderson-Darling statistic based goodness-of-fit lest for spectrum sensing in a cognitive radio network with multiple nodes. A technique lo evaluate the optimal detection threshold that satisfies a constraint on the false-alarm probability is discussed. Assuming stationary and known noise statistics, we show that this detector, called as the K-sample Anderson-Darling statistic based detector, outperforms the well-known energy detector under various practically relevant primary signal models and channel fading models, through extensive Monte Carlo simulations.\",\"PeriodicalId\":371829,\"journal\":{\"name\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"16 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2015.7458396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种基于Anderson-Darling统计的多维度拟合优度方法,用于多节点认知无线电网络的频谱感知。讨论了一种评估满足虚警概率约束的最优检测阈值的方法。假设平稳且已知噪声统计量,我们通过广泛的蒙特卡罗模拟表明,这种检测器被称为基于k样本Anderson-Darling统计量的检测器,在各种实际相关的主信号模型和信道衰落模型下优于众所周知的能量检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-dimensional Anderson-Darling statistic based goodness-of-fit test for spectrum sensing
In this paper, we propose a multi-dimensional extension of the Anderson-Darling statistic based goodness-of-fit lest for spectrum sensing in a cognitive radio network with multiple nodes. A technique lo evaluate the optimal detection threshold that satisfies a constraint on the false-alarm probability is discussed. Assuming stationary and known noise statistics, we show that this detector, called as the K-sample Anderson-Darling statistic based detector, outperforms the well-known energy detector under various practically relevant primary signal models and channel fading models, through extensive Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A lattice coding based non-orthogonal multiple access scheme A new class of optimal optical orthogonal codes with weight six Information set and iterative encoding for Affine Grassmann codes Ensembles of sequences and arrays Lattice network codes over optimal lattices in low dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1