医学图像检索的潜在语义关联

Fan Zhang, Yang Song, Sidong Liu, Sonia Pujol, R. Kikinis, D. Feng, Weidong (Tom) Cai
{"title":"医学图像检索的潜在语义关联","authors":"Fan Zhang, Yang Song, Sidong Liu, Sonia Pujol, R. Kikinis, D. Feng, Weidong (Tom) Cai","doi":"10.1109/DICTA.2014.7008114","DOIUrl":null,"url":null,"abstract":"In this work, we propose a Latent Semantic Association Retrieval(LSAR) method to break the bottleneck of the low-level feature based medical image retrieval. The method constructs the high-level semantic correlations among patients based on the low-level feature set extracted from the images. Specifically, a Pair-LDA model is firstly designed to refine the topic generation process of traditional Latent Dirichlet Allocation (LDA), by generating the topics in a pair-wise context. Then, the latent association, called CCA-Correlation, is extracted to capture the correlations among the images in the Pair-LDA topic space based on Canonical Correlation Analysis (CCA). Finally, we calculate the similarity between images using the derived CCA-Correlation model and apply it to medical image retrieval. To evaluate the effectiveness of our method, we conduct the retrieval experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline cohort with 331 subjects, and our method achieves good improvement compared to the state-of-the-art medical image retrieval methods. LSAR is independent on problem domain, thus can be generally applicable to other medical or general image analysis.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Latent Semantic Association for Medical Image Retrieval\",\"authors\":\"Fan Zhang, Yang Song, Sidong Liu, Sonia Pujol, R. Kikinis, D. Feng, Weidong (Tom) Cai\",\"doi\":\"10.1109/DICTA.2014.7008114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a Latent Semantic Association Retrieval(LSAR) method to break the bottleneck of the low-level feature based medical image retrieval. The method constructs the high-level semantic correlations among patients based on the low-level feature set extracted from the images. Specifically, a Pair-LDA model is firstly designed to refine the topic generation process of traditional Latent Dirichlet Allocation (LDA), by generating the topics in a pair-wise context. Then, the latent association, called CCA-Correlation, is extracted to capture the correlations among the images in the Pair-LDA topic space based on Canonical Correlation Analysis (CCA). Finally, we calculate the similarity between images using the derived CCA-Correlation model and apply it to medical image retrieval. To evaluate the effectiveness of our method, we conduct the retrieval experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline cohort with 331 subjects, and our method achieves good improvement compared to the state-of-the-art medical image retrieval methods. LSAR is independent on problem domain, thus can be generally applicable to other medical or general image analysis.\",\"PeriodicalId\":146695,\"journal\":{\"name\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"26 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2014.7008114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们提出了一种潜在语义关联检索(LSAR)方法来打破基于低级特征的医学图像检索的瓶颈。该方法基于从图像中提取的低级特征集构建患者之间的高级语义关联。具体而言,首先设计了一个Pair-LDA模型,通过在成对上下文中生成主题来改进传统的潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的主题生成过程。然后,基于典型相关分析(Canonical Correlation Analysis, CCA),提取潜在关联,即CCA-Correlation,以捕获Pair-LDA主题空间中图像之间的相关性。最后,利用推导的CCA-Correlation模型计算图像之间的相似度,并将其应用于医学图像检索。为了评估我们方法的有效性,我们对331名受试者进行了阿尔茨海默病神经影像学倡议(ADNI)基线队列的检索实验,与目前最先进的医学图像检索方法相比,我们的方法取得了较好的改进。LSAR不依赖于问题域,因此可以普遍适用于其他医学或一般图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent Semantic Association for Medical Image Retrieval
In this work, we propose a Latent Semantic Association Retrieval(LSAR) method to break the bottleneck of the low-level feature based medical image retrieval. The method constructs the high-level semantic correlations among patients based on the low-level feature set extracted from the images. Specifically, a Pair-LDA model is firstly designed to refine the topic generation process of traditional Latent Dirichlet Allocation (LDA), by generating the topics in a pair-wise context. Then, the latent association, called CCA-Correlation, is extracted to capture the correlations among the images in the Pair-LDA topic space based on Canonical Correlation Analysis (CCA). Finally, we calculate the similarity between images using the derived CCA-Correlation model and apply it to medical image retrieval. To evaluate the effectiveness of our method, we conduct the retrieval experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline cohort with 331 subjects, and our method achieves good improvement compared to the state-of-the-art medical image retrieval methods. LSAR is independent on problem domain, thus can be generally applicable to other medical or general image analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Reconstruction of Planar Patches Seen by Omnidirectional Cameras A Blind and Robust Video Watermarking Scheme Using Chrominance Embedding Multi-Focus Image Fusion via Boundary Finding and Multi-Scale Morphological Focus-Measure Effect of Smoothing on Sparsity Prior CT Reconstruction Discriminative Key Pose Extraction Using Extended LC-KSVD for Action Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1