{"title":"一种高效的基于代理的移动云计算框架设计","authors":"Zhijun Zhang, Hyotaek Lim, Hoon-Jae Lee","doi":"10.6109/jicce.2015.13.1.015","DOIUrl":null,"url":null,"abstract":"The limited battery power in the mobile environment, lack of sufficient wireless bandwidth, limited resources of mobile terminals, and frequent breakdowns of the wireless network have become major hurdles in the development of mobile cloud computing (MCC). In order to solve the abovementioned problems, This paper propose a proxy-based MCC framework by adding a proxy server between mobile devices and cloud services to optimize the access to cloud services by mobile devices on the network transmission, application support, and service mode levels. Finally, we verify the effectiveness of the developed framework through an experimental analysis. This framework can ensure that mobile users have efficient access to cloud services.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"14 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Design of an Efficient Proxy-Based Framework for Mobile Cloud Computing\",\"authors\":\"Zhijun Zhang, Hyotaek Lim, Hoon-Jae Lee\",\"doi\":\"10.6109/jicce.2015.13.1.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited battery power in the mobile environment, lack of sufficient wireless bandwidth, limited resources of mobile terminals, and frequent breakdowns of the wireless network have become major hurdles in the development of mobile cloud computing (MCC). In order to solve the abovementioned problems, This paper propose a proxy-based MCC framework by adding a proxy server between mobile devices and cloud services to optimize the access to cloud services by mobile devices on the network transmission, application support, and service mode levels. Finally, we verify the effectiveness of the developed framework through an experimental analysis. This framework can ensure that mobile users have efficient access to cloud services.\",\"PeriodicalId\":272551,\"journal\":{\"name\":\"J. Inform. and Commun. Convergence Engineering\",\"volume\":\"14 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inform. and Commun. Convergence Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/jicce.2015.13.1.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2015.13.1.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Design of an Efficient Proxy-Based Framework for Mobile Cloud Computing
The limited battery power in the mobile environment, lack of sufficient wireless bandwidth, limited resources of mobile terminals, and frequent breakdowns of the wireless network have become major hurdles in the development of mobile cloud computing (MCC). In order to solve the abovementioned problems, This paper propose a proxy-based MCC framework by adding a proxy server between mobile devices and cloud services to optimize the access to cloud services by mobile devices on the network transmission, application support, and service mode levels. Finally, we verify the effectiveness of the developed framework through an experimental analysis. This framework can ensure that mobile users have efficient access to cloud services.