{"title":"基于卷积神经网络的草药分类","authors":"J. Tan, K. Lim, C. Lee","doi":"10.1109/IICAIET51634.2021.9573706","DOIUrl":null,"url":null,"abstract":"Herbs are plants with savory or aromatic properties that are widely used for flavoring, food, medicine or perfume. The worldwide use of herbal products for healthcare has increased tremendously over the past decades. The plethora of herb species makes recognizing the herbs remains a challenge. This has spurred great interests among the researchers on pursuing artificial intelligent methods for herb classification. This paper presents a convolutional neural network (CNN) for herb classification. The proposed CNN consists of two convolution layers, two max pooling layers, a fully-connected layer and a softmax layer. The ReLU activation function and dropout regularization are leveraged to improve the performance of the proposed CNN. A dataset with 4067 herb images was collected for the evaluation purposes. The proposed CNN model achieves an accuracy of above 93% despite the fact that some herbs are visually similar.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"31 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Herb Classification with Convolutional Neural Network\",\"authors\":\"J. Tan, K. Lim, C. Lee\",\"doi\":\"10.1109/IICAIET51634.2021.9573706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herbs are plants with savory or aromatic properties that are widely used for flavoring, food, medicine or perfume. The worldwide use of herbal products for healthcare has increased tremendously over the past decades. The plethora of herb species makes recognizing the herbs remains a challenge. This has spurred great interests among the researchers on pursuing artificial intelligent methods for herb classification. This paper presents a convolutional neural network (CNN) for herb classification. The proposed CNN consists of two convolution layers, two max pooling layers, a fully-connected layer and a softmax layer. The ReLU activation function and dropout regularization are leveraged to improve the performance of the proposed CNN. A dataset with 4067 herb images was collected for the evaluation purposes. The proposed CNN model achieves an accuracy of above 93% despite the fact that some herbs are visually similar.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"31 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

草药是具有咸味或芳香特性的植物,广泛用于调味、食品、药物或香水。在过去的几十年里,世界范围内对草药产品的使用急剧增加。草本植物种类繁多,使得识别草本植物仍然是一个挑战。这激发了研究人员对草药分类的人工智能方法的极大兴趣。提出了一种用于草药分类的卷积神经网络(CNN)。本文提出的CNN由两个卷积层、两个最大池化层、一个完全连接层和一个softmax层组成。利用ReLU激活函数和dropout正则化来提高所提CNN的性能。为了评估目的,收集了一个包含4067张草药图像的数据集。尽管某些草药在视觉上相似,但所提出的CNN模型的准确率仍达到93%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Herb Classification with Convolutional Neural Network
Herbs are plants with savory or aromatic properties that are widely used for flavoring, food, medicine or perfume. The worldwide use of herbal products for healthcare has increased tremendously over the past decades. The plethora of herb species makes recognizing the herbs remains a challenge. This has spurred great interests among the researchers on pursuing artificial intelligent methods for herb classification. This paper presents a convolutional neural network (CNN) for herb classification. The proposed CNN consists of two convolution layers, two max pooling layers, a fully-connected layer and a softmax layer. The ReLU activation function and dropout regularization are leveraged to improve the performance of the proposed CNN. A dataset with 4067 herb images was collected for the evaluation purposes. The proposed CNN model achieves an accuracy of above 93% despite the fact that some herbs are visually similar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach Eye-Tank: Monitoring and Predicting Water and pH Level in Smart Farming Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network Multi-Scale Texture Analysis For Finger Vein Anti-Spoofing Utilization of Response Surface Methodology and Regression Model in Optimizing Bioretention Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1