机场信息系统的安全身份认证和逻辑访问控制

M. David, G. Hussein, K. Sakurai
{"title":"机场信息系统的安全身份认证和逻辑访问控制","authors":"M. David, G. Hussein, K. Sakurai","doi":"10.1109/CCST.2003.1297578","DOIUrl":null,"url":null,"abstract":"We propose identity authentication by using a contactless smart card (CSC) with multiple biometric features for secure logical access to improve airport security. Proper identification of a cardholder with reliable data securely stored in a CSC provides a means to validate and audit access into a computer or communications network. We recommend the CSC because it facilitates fast, secure physical access to airport facilities, and offers lower mechanical complexity of the reader/writer (r/w) unit, thereby affording higher reliability and less field maintenance. The two-stage random number generator (TSRG) cryptosystem hybrid scheme algorithm is proposed for secure identity authentication between the cardholder and the workstation. This hybrid cryptosystem is based on an attack-oriented design to satisfy all security services. For enrollment, the user's live biometrics is scanned and, the unique characteristics are extracted from the biometric image to create the user's biometric template. The TSRG cryptosystem generates the appropriate seed that is called basic random data, random key and data key. Using the previous random data, instantaneous real time one time pad (OTP)-like data with lengths equal to that of the template is generated and combined with the template, then encrypted using the data key. A collision resistant hashing scheme is used for hashing the encrypted template to be used in the signature. The hash value is appended to the random key and data key. To generate the signature block, these three values are encrypted using the public key algorithm. The result is concatenated with the encrypted basic random data and template then stored in the smart card. For authenticating the user, the smart card is positioned onto a reader/writer. The stored file of the encrypted biometric template is retrieved. The identity verification process starts with placing the user's biometric feature on the scanner. The unique characteristics are extracted from the biometric image to create the users \"live\" biometric template. This new template is then compared with the template previously and a numeric matching score is generated, based on the percent of matching between the live and stored template. System designers determine the threshold value for this identity verification score based upon the security threat to the system.","PeriodicalId":344868,"journal":{"name":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","volume":"52 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Secure identity authentication and logical access control for airport information systems\",\"authors\":\"M. David, G. Hussein, K. Sakurai\",\"doi\":\"10.1109/CCST.2003.1297578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose identity authentication by using a contactless smart card (CSC) with multiple biometric features for secure logical access to improve airport security. Proper identification of a cardholder with reliable data securely stored in a CSC provides a means to validate and audit access into a computer or communications network. We recommend the CSC because it facilitates fast, secure physical access to airport facilities, and offers lower mechanical complexity of the reader/writer (r/w) unit, thereby affording higher reliability and less field maintenance. The two-stage random number generator (TSRG) cryptosystem hybrid scheme algorithm is proposed for secure identity authentication between the cardholder and the workstation. This hybrid cryptosystem is based on an attack-oriented design to satisfy all security services. For enrollment, the user's live biometrics is scanned and, the unique characteristics are extracted from the biometric image to create the user's biometric template. The TSRG cryptosystem generates the appropriate seed that is called basic random data, random key and data key. Using the previous random data, instantaneous real time one time pad (OTP)-like data with lengths equal to that of the template is generated and combined with the template, then encrypted using the data key. A collision resistant hashing scheme is used for hashing the encrypted template to be used in the signature. The hash value is appended to the random key and data key. To generate the signature block, these three values are encrypted using the public key algorithm. The result is concatenated with the encrypted basic random data and template then stored in the smart card. For authenticating the user, the smart card is positioned onto a reader/writer. The stored file of the encrypted biometric template is retrieved. The identity verification process starts with placing the user's biometric feature on the scanner. The unique characteristics are extracted from the biometric image to create the users \\\"live\\\" biometric template. This new template is then compared with the template previously and a numeric matching score is generated, based on the percent of matching between the live and stored template. System designers determine the threshold value for this identity verification score based upon the security threat to the system.\",\"PeriodicalId\":344868,\"journal\":{\"name\":\"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.\",\"volume\":\"52 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2003.1297578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2003.1297578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们建议使用具有多种生物特征的非接触式智能卡(CSC)进行身份认证,以实现安全的逻辑访问,以提高机场安全性。使用安全存储在CSC中的可靠数据对持卡人进行正确识别,提供了验证和审计进入计算机或通信网络的访问的方法。我们推荐CSC,因为它有助于快速,安全的物理访问机场设施,并提供较低的读写器(r/w)单元的机械复杂性,从而提供更高的可靠性和更少的现场维护。提出了一种两阶段随机数生成器(TSRG)密码混合方案算法,用于持卡人与工作站之间的安全身份认证。这种混合密码系统基于面向攻击的设计,以满足所有安全服务。注册时,扫描用户的实时生物特征,并从生物特征图像中提取独特特征,以创建用户的生物特征模板。TSRG密码系统生成相应的种子,称为基本随机数据、随机密钥和数据密钥。使用之前的随机数据,生成长度等于模板的即时实时一次性填充(OTP)类数据,并与模板组合,然后使用数据密钥进行加密。对签名中使用的加密模板进行哈希时,使用了抗碰撞哈希方案。哈希值被附加到随机键和数据键后。为了生成签名块,使用公钥算法对这三个值进行加密。结果与加密的基本随机数据和模板连接,然后存储在智能卡中。为了验证用户身份,智能卡被放置在读写器上。检索存储的加密生物特征模板文件。身份验证过程首先将用户的生物特征放在扫描仪上。从生物特征图像中提取独特的特征,创建用户“活”的生物特征模板。然后将这个新模板与以前的模板进行比较,并根据活动模板和存储模板之间的匹配百分比生成一个数字匹配分数。系统设计人员根据对系统的安全威胁确定此身份验证分数的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure identity authentication and logical access control for airport information systems
We propose identity authentication by using a contactless smart card (CSC) with multiple biometric features for secure logical access to improve airport security. Proper identification of a cardholder with reliable data securely stored in a CSC provides a means to validate and audit access into a computer or communications network. We recommend the CSC because it facilitates fast, secure physical access to airport facilities, and offers lower mechanical complexity of the reader/writer (r/w) unit, thereby affording higher reliability and less field maintenance. The two-stage random number generator (TSRG) cryptosystem hybrid scheme algorithm is proposed for secure identity authentication between the cardholder and the workstation. This hybrid cryptosystem is based on an attack-oriented design to satisfy all security services. For enrollment, the user's live biometrics is scanned and, the unique characteristics are extracted from the biometric image to create the user's biometric template. The TSRG cryptosystem generates the appropriate seed that is called basic random data, random key and data key. Using the previous random data, instantaneous real time one time pad (OTP)-like data with lengths equal to that of the template is generated and combined with the template, then encrypted using the data key. A collision resistant hashing scheme is used for hashing the encrypted template to be used in the signature. The hash value is appended to the random key and data key. To generate the signature block, these three values are encrypted using the public key algorithm. The result is concatenated with the encrypted basic random data and template then stored in the smart card. For authenticating the user, the smart card is positioned onto a reader/writer. The stored file of the encrypted biometric template is retrieved. The identity verification process starts with placing the user's biometric feature on the scanner. The unique characteristics are extracted from the biometric image to create the users "live" biometric template. This new template is then compared with the template previously and a numeric matching score is generated, based on the percent of matching between the live and stored template. System designers determine the threshold value for this identity verification score based upon the security threat to the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proxy certificates-based digital fingerprinting scheme for mobile communication Efficient method for security image data compression Design of a computer-aided system for risk assessment on information systems Contingency planning: emergency preparedness for terrorist attacks Integration of trusted operating system from open source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1