基于三维波束成形的无人机辅助边缘网络数据传输优化

Shraddha Tripathi, O. Pandey, R. Hegde
{"title":"基于三维波束成形的无人机辅助边缘网络数据传输优化","authors":"Shraddha Tripathi, O. Pandey, R. Hegde","doi":"10.1109/NCC52529.2021.9530188","DOIUrl":null,"url":null,"abstract":"Reliable and low-latency data transfer to the cell edge users (CEUs) of 5G edge-network is a challenging problem. Solution to this problem can enable real-time applications such as remote health-monitoring of patients and target tracking in battle field. In this work, a novel method for optimal data transfer over UAV-assisted edge-networks is proposed. The proposed method utilizes unmanned aerial vehicle (UAV) as a relay node for data transfer between ground base station (GBS) and the CEUs. Additionally, UAV node is designed to be able to perform 3D beamforming leading to improved signal to interference noise ratio (SINR) and high throughput. To obtain optimal data transfer, the CEUs are first geographically clustered using a distance criterion. Subsequently, a joint optimization problem that aims to find the UAV trajectory and the beamforming downtilt angles, while applying minimum latency and maximum throughput constraints is formulated. This joint optimization problem is solved by using an iterative approach. Extensive simulations are then performed to validate this method for network latency and throughput under varying network conditions. The results are motivating enough for the method to be used in medium and large scale edge networks.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"26 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Data Transfer in UAV-Assisted Edge-Networks Using 3D Beamforming\",\"authors\":\"Shraddha Tripathi, O. Pandey, R. Hegde\",\"doi\":\"10.1109/NCC52529.2021.9530188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and low-latency data transfer to the cell edge users (CEUs) of 5G edge-network is a challenging problem. Solution to this problem can enable real-time applications such as remote health-monitoring of patients and target tracking in battle field. In this work, a novel method for optimal data transfer over UAV-assisted edge-networks is proposed. The proposed method utilizes unmanned aerial vehicle (UAV) as a relay node for data transfer between ground base station (GBS) and the CEUs. Additionally, UAV node is designed to be able to perform 3D beamforming leading to improved signal to interference noise ratio (SINR) and high throughput. To obtain optimal data transfer, the CEUs are first geographically clustered using a distance criterion. Subsequently, a joint optimization problem that aims to find the UAV trajectory and the beamforming downtilt angles, while applying minimum latency and maximum throughput constraints is formulated. This joint optimization problem is solved by using an iterative approach. Extensive simulations are then performed to validate this method for network latency and throughput under varying network conditions. The results are motivating enough for the method to be used in medium and large scale edge networks.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"26 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

向5G边缘网络的蜂窝边缘用户(ceu)可靠、低延迟的数据传输是一个具有挑战性的问题。解决这一问题可以实现病人远程健康监测和战场目标跟踪等实时应用。在这项工作中,提出了一种新的无人机辅助边缘网络的最优数据传输方法。该方法利用无人机(UAV)作为中继节点,在地面基站(GBS)和ceu之间进行数据传输。此外,无人机节点被设计为能够执行3D波束成形,从而提高信号干扰噪声比(SINR)和高吞吐量。为了获得最佳的数据传输,首先使用距离标准对ceu进行地理聚类。在此基础上,提出了在最小时延和最大吞吐量约束下,求解无人机航迹和波束形成下倾角的联合优化问题。该联合优化问题采用迭代法求解。然后进行了大量的模拟,以验证该方法在不同网络条件下的网络延迟和吞吐量。研究结果对该方法在大中型边缘网络中的应用具有一定的激励作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Data Transfer in UAV-Assisted Edge-Networks Using 3D Beamforming
Reliable and low-latency data transfer to the cell edge users (CEUs) of 5G edge-network is a challenging problem. Solution to this problem can enable real-time applications such as remote health-monitoring of patients and target tracking in battle field. In this work, a novel method for optimal data transfer over UAV-assisted edge-networks is proposed. The proposed method utilizes unmanned aerial vehicle (UAV) as a relay node for data transfer between ground base station (GBS) and the CEUs. Additionally, UAV node is designed to be able to perform 3D beamforming leading to improved signal to interference noise ratio (SINR) and high throughput. To obtain optimal data transfer, the CEUs are first geographically clustered using a distance criterion. Subsequently, a joint optimization problem that aims to find the UAV trajectory and the beamforming downtilt angles, while applying minimum latency and maximum throughput constraints is formulated. This joint optimization problem is solved by using an iterative approach. Extensive simulations are then performed to validate this method for network latency and throughput under varying network conditions. The results are motivating enough for the method to be used in medium and large scale edge networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1