用于图像涂装的照片缺陷检测

Rong-Chi Chang, Yun-Long Sie, Su-Mei Chou, T. Shih
{"title":"用于图像涂装的照片缺陷检测","authors":"Rong-Chi Chang, Yun-Long Sie, Su-Mei Chou, T. Shih","doi":"10.1109/ISM.2005.91","DOIUrl":null,"url":null,"abstract":"Image inpainting (or image completion) techniques use textural or structural information to repair or fill damaged portion of a picture. However, most techniques request a human to identify the portion to be inpainted. We developed a new mechanism which can automatically detect defect portions in a photo, including damages by color ink spray and scratch drawing. The mechanism is based on several filters and structural information of damages. Old photos from the author's family are used for testing. Preliminary results show that most damages can be automatically detected without human involvement. The mechanism is integrated with our inpainting algorithms to complete a fully automatic photo defects repairing system.","PeriodicalId":322363,"journal":{"name":"Seventh IEEE International Symposium on Multimedia (ISM'05)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Photo defect detection for image inpainting\",\"authors\":\"Rong-Chi Chang, Yun-Long Sie, Su-Mei Chou, T. Shih\",\"doi\":\"10.1109/ISM.2005.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting (or image completion) techniques use textural or structural information to repair or fill damaged portion of a picture. However, most techniques request a human to identify the portion to be inpainted. We developed a new mechanism which can automatically detect defect portions in a photo, including damages by color ink spray and scratch drawing. The mechanism is based on several filters and structural information of damages. Old photos from the author's family are used for testing. Preliminary results show that most damages can be automatically detected without human involvement. The mechanism is integrated with our inpainting algorithms to complete a fully automatic photo defects repairing system.\",\"PeriodicalId\":322363,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2005.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Multimedia (ISM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2005.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

图像补全(或图像补全)技术使用纹理或结构信息来修复或填充图像的损坏部分。然而,大多数技术都需要人来识别要涂上的部分。我们开发了一种新的机制,可以自动检测照片中的缺陷部分,包括彩色油墨喷涂和划痕绘制的损坏。该机制是基于若干滤波器和损伤的结构信息。作者家庭的老照片用于测试。初步结果表明,大多数损伤可以在没有人工干预的情况下自动检测出来。该机构与我们的喷漆算法相结合,完成了一个全自动的照片缺陷修复系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photo defect detection for image inpainting
Image inpainting (or image completion) techniques use textural or structural information to repair or fill damaged portion of a picture. However, most techniques request a human to identify the portion to be inpainted. We developed a new mechanism which can automatically detect defect portions in a photo, including damages by color ink spray and scratch drawing. The mechanism is based on several filters and structural information of damages. Old photos from the author's family are used for testing. Preliminary results show that most damages can be automatically detected without human involvement. The mechanism is integrated with our inpainting algorithms to complete a fully automatic photo defects repairing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting low-cost video-on-demand in heterogeneous peer-to-peer networks Striping delay-sensitive packets over multiple burst-loss channels with random delays An ontology learning method enhanced by frame semantics BIOGLYPH: biometric identification in pervasive environments Key distributions as musical fingerprints for similarity assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1