{"title":"基于快速行军法和支持向量机的窄通道路径规划","authors":"Quoc Huy Do, S. Mita, Keisuke Yoneda","doi":"10.1109/IVS.2014.6856611","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel path planning method under non-holonomic constraint for car-like vehicles, which associates map discovery and heuristic search to attain an optimal resultant path. The map discovery applies fast marching method to investigate the map geometric information. After that, the support vector machine is performed to find obstacle clearance information. This information is then used as a heuristic function which helps greatly reduce the search space. The fast marching is performed again, guided by this function to generate vehicle motions under kinematic constraints. Experimental results have shown that this method is able to generate motions for non-holonomic vehicles. In comparison with related methods, the path generated by proposed method is smoother and stay farther away from the obstacles.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"5 41","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Narrow passage path planning using fast marching method and support vector machine\",\"authors\":\"Quoc Huy Do, S. Mita, Keisuke Yoneda\",\"doi\":\"10.1109/IVS.2014.6856611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel path planning method under non-holonomic constraint for car-like vehicles, which associates map discovery and heuristic search to attain an optimal resultant path. The map discovery applies fast marching method to investigate the map geometric information. After that, the support vector machine is performed to find obstacle clearance information. This information is then used as a heuristic function which helps greatly reduce the search space. The fast marching is performed again, guided by this function to generate vehicle motions under kinematic constraints. Experimental results have shown that this method is able to generate motions for non-holonomic vehicles. In comparison with related methods, the path generated by proposed method is smoother and stay farther away from the obstacles.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"5 41\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Narrow passage path planning using fast marching method and support vector machine
This paper introduces a novel path planning method under non-holonomic constraint for car-like vehicles, which associates map discovery and heuristic search to attain an optimal resultant path. The map discovery applies fast marching method to investigate the map geometric information. After that, the support vector machine is performed to find obstacle clearance information. This information is then used as a heuristic function which helps greatly reduce the search space. The fast marching is performed again, guided by this function to generate vehicle motions under kinematic constraints. Experimental results have shown that this method is able to generate motions for non-holonomic vehicles. In comparison with related methods, the path generated by proposed method is smoother and stay farther away from the obstacles.