变换域的创新CS成像方法

T. Moriyama, N. Anselmi, G. Oliveri, A. Massa
{"title":"变换域的创新CS成像方法","authors":"T. Moriyama, N. Anselmi, G. Oliveri, A. Massa","doi":"10.1109/CAMA.2014.7003312","DOIUrl":null,"url":null,"abstract":"The solution of linear microwave imaging problems is considered in this work through innovative classes of Compressive Sensing (CS) methods. More in detail, the formulation of the inversion process in transformed domains with sparseness-regularized formulations is considered. Representative numerical examples illustrating the potentialities and limitations of the arising CS inversion approaches are reported.","PeriodicalId":409536,"journal":{"name":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative CS imaging methods in transformed domains\",\"authors\":\"T. Moriyama, N. Anselmi, G. Oliveri, A. Massa\",\"doi\":\"10.1109/CAMA.2014.7003312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of linear microwave imaging problems is considered in this work through innovative classes of Compressive Sensing (CS) methods. More in detail, the formulation of the inversion process in transformed domains with sparseness-regularized formulations is considered. Representative numerical examples illustrating the potentialities and limitations of the arising CS inversion approaches are reported.\",\"PeriodicalId\":409536,\"journal\":{\"name\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMA.2014.7003312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA.2014.7003312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过创新的压缩感知(CS)方法来解决线性微波成像问题。更详细地,用稀疏正则化的形式考虑了变换域中的反演过程。报告了具有代表性的数值例子,说明了出现的CS反演方法的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative CS imaging methods in transformed domains
The solution of linear microwave imaging problems is considered in this work through innovative classes of Compressive Sensing (CS) methods. More in detail, the formulation of the inversion process in transformed domains with sparseness-regularized formulations is considered. Representative numerical examples illustrating the potentialities and limitations of the arising CS inversion approaches are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the uncertainties on the scattering problems Quasi-modal analysis of segmented waveguides Imaging of a scaled comet model from lab experiments Analysis of surrounded antennas: From DG-FDTD to DG-FDTD/IPO Compact antenna test range implementation in IETR millimetre wave antenna test facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1