隐私保护欺诈检测的探索性研究

Rémi Canillas, Rania Talbi, S. Bouchenak, Omar Hasan, L. Brunie, Laurent Sarrat
{"title":"隐私保护欺诈检测的探索性研究","authors":"Rémi Canillas, Rania Talbi, S. Bouchenak, Omar Hasan, L. Brunie, Laurent Sarrat","doi":"10.1145/3284028.3284032","DOIUrl":null,"url":null,"abstract":"With the wide adoption of the Internet, digital transactions surge exponentially and so do the impersonation fraud. While machine learning techniques show strong promise to be the building block for digital fraud detection systems, clients may be reluctant to share the raw data with such systems due to privacy concerns. The emerging privacy preserving machine learning techniques that employ homomorphic encryption to resolve this conundrum unfortunately increases the computational overhead of detection. In this paper, we present a first-of-a-kind empirical performance study of a private fraud detection system developed at SiS ID, a French business security platform. A privacy-preserving decision tree which can classify transactions into four risk classes (safe, moderately risky, very risky and fraud) is trained on more than 160000 real world transactions, and we quantitatively compare the classification accuracy, latency and network bandwidth under various combinations of encryption parameters and learning hyper-parameters, in order to explore the impact of the configuration on the performances. Our results show that the computation and communication overhead of processing encrypted data increases by an order of magnitude of 5, and highly depends on the configuration of the encryption key and the number of nodes in the decision tree.","PeriodicalId":285212,"journal":{"name":"Proceedings of the 19th International Middleware Conference Industry","volume":"8 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploratory Study of Privacy Preserving Fraud Detection\",\"authors\":\"Rémi Canillas, Rania Talbi, S. Bouchenak, Omar Hasan, L. Brunie, Laurent Sarrat\",\"doi\":\"10.1145/3284028.3284032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide adoption of the Internet, digital transactions surge exponentially and so do the impersonation fraud. While machine learning techniques show strong promise to be the building block for digital fraud detection systems, clients may be reluctant to share the raw data with such systems due to privacy concerns. The emerging privacy preserving machine learning techniques that employ homomorphic encryption to resolve this conundrum unfortunately increases the computational overhead of detection. In this paper, we present a first-of-a-kind empirical performance study of a private fraud detection system developed at SiS ID, a French business security platform. A privacy-preserving decision tree which can classify transactions into four risk classes (safe, moderately risky, very risky and fraud) is trained on more than 160000 real world transactions, and we quantitatively compare the classification accuracy, latency and network bandwidth under various combinations of encryption parameters and learning hyper-parameters, in order to explore the impact of the configuration on the performances. Our results show that the computation and communication overhead of processing encrypted data increases by an order of magnitude of 5, and highly depends on the configuration of the encryption key and the number of nodes in the decision tree.\",\"PeriodicalId\":285212,\"journal\":{\"name\":\"Proceedings of the 19th International Middleware Conference Industry\",\"volume\":\"8 23\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Middleware Conference Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3284028.3284032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Middleware Conference Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284028.3284032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着互联网的广泛应用,数字交易呈指数级增长,假冒欺诈也呈指数级增长。虽然机器学习技术有望成为数字欺诈检测系统的基石,但出于隐私考虑,客户可能不愿与此类系统共享原始数据。新兴的保护隐私的机器学习技术采用同态加密来解决这个难题,不幸的是增加了检测的计算开销。在本文中,我们首次对法国商业安全平台SiS ID开发的私人欺诈检测系统进行了实证性能研究。在超过160000个真实世界的交易中训练了一棵可以将交易分为安全、中等风险、非常风险和欺诈四类风险的隐私保护决策树,并定量比较了不同加密参数和学习超参数组合下的分类准确率、延迟和网络带宽,以探讨配置对性能的影响。我们的研究结果表明,处理加密数据的计算和通信开销增加了5个数量级,并且高度依赖于加密密钥的配置和决策树中的节点数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory Study of Privacy Preserving Fraud Detection
With the wide adoption of the Internet, digital transactions surge exponentially and so do the impersonation fraud. While machine learning techniques show strong promise to be the building block for digital fraud detection systems, clients may be reluctant to share the raw data with such systems due to privacy concerns. The emerging privacy preserving machine learning techniques that employ homomorphic encryption to resolve this conundrum unfortunately increases the computational overhead of detection. In this paper, we present a first-of-a-kind empirical performance study of a private fraud detection system developed at SiS ID, a French business security platform. A privacy-preserving decision tree which can classify transactions into four risk classes (safe, moderately risky, very risky and fraud) is trained on more than 160000 real world transactions, and we quantitatively compare the classification accuracy, latency and network bandwidth under various combinations of encryption parameters and learning hyper-parameters, in order to explore the impact of the configuration on the performances. Our results show that the computation and communication overhead of processing encrypted data increases by an order of magnitude of 5, and highly depends on the configuration of the encryption key and the number of nodes in the decision tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Fairness and Prioritization of Transactions in Permissioned Blockchain Systems (Industry Track) DéjàVu The Design and Implementation of a Real Time Visual Search System on JD E-commerce Platform Exploratory Study of Privacy Preserving Fraud Detection Serverless Data Analytics in the IBM Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1