H. Zhao, Xin Wang, Zhongze Jiao, W. Zeng, J. Dou, Jianglong Yu
{"title":"结合入侵杂草优化的改进粒子群优化算法","authors":"H. Zhao, Xin Wang, Zhongze Jiao, W. Zeng, J. Dou, Jianglong Yu","doi":"10.1109/IUCC/DSCI/SmartCNS.2019.00070","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid algorithm based on the invasive weed optimization (IWO) and particle swarm optimization (PSO), named IW-PSO. By incorporating the reproduction and spatial dispersal of IWO into the traditional PSO, exploration and exploitation of the PSO can be enhanced and well balanced to achieve better performance. In a set of 15 test function problem, computational results, preceded by analysis and selection of IW-PSO parameters, show that IW-PSO can improve the search performance. In the other comparative experiment with fixed iteration, the IW-PSO algorithm is compared with various more up-to-date improved PSO procedures appearing in the literature. Comparative results demonstrate that IW-PSO can generate quite competitive quality solution in stability, accuracy and efficiency. As evidenced by the overall assessment based on two kinds of computational experience, IW-PSO can effectively obtain higher quality solutions so as to avoid being trapped in local optimum.","PeriodicalId":410905,"journal":{"name":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","volume":"397 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Particle Swarm Optimization Algorithm Combined with Invasive Weed Optimization\",\"authors\":\"H. Zhao, Xin Wang, Zhongze Jiao, W. Zeng, J. Dou, Jianglong Yu\",\"doi\":\"10.1109/IUCC/DSCI/SmartCNS.2019.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid algorithm based on the invasive weed optimization (IWO) and particle swarm optimization (PSO), named IW-PSO. By incorporating the reproduction and spatial dispersal of IWO into the traditional PSO, exploration and exploitation of the PSO can be enhanced and well balanced to achieve better performance. In a set of 15 test function problem, computational results, preceded by analysis and selection of IW-PSO parameters, show that IW-PSO can improve the search performance. In the other comparative experiment with fixed iteration, the IW-PSO algorithm is compared with various more up-to-date improved PSO procedures appearing in the literature. Comparative results demonstrate that IW-PSO can generate quite competitive quality solution in stability, accuracy and efficiency. As evidenced by the overall assessment based on two kinds of computational experience, IW-PSO can effectively obtain higher quality solutions so as to avoid being trapped in local optimum.\",\"PeriodicalId\":410905,\"journal\":{\"name\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"volume\":\"397 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Particle Swarm Optimization Algorithm Combined with Invasive Weed Optimization
This paper presents a hybrid algorithm based on the invasive weed optimization (IWO) and particle swarm optimization (PSO), named IW-PSO. By incorporating the reproduction and spatial dispersal of IWO into the traditional PSO, exploration and exploitation of the PSO can be enhanced and well balanced to achieve better performance. In a set of 15 test function problem, computational results, preceded by analysis and selection of IW-PSO parameters, show that IW-PSO can improve the search performance. In the other comparative experiment with fixed iteration, the IW-PSO algorithm is compared with various more up-to-date improved PSO procedures appearing in the literature. Comparative results demonstrate that IW-PSO can generate quite competitive quality solution in stability, accuracy and efficiency. As evidenced by the overall assessment based on two kinds of computational experience, IW-PSO can effectively obtain higher quality solutions so as to avoid being trapped in local optimum.