自组织映射的加权粒子群聚类算法

Guorong Cui, Hao Li, Yachuan Zhang, Rongjing Bu, Yan Kang, Jinyuan Li, Yang Hu
{"title":"自组织映射的加权粒子群聚类算法","authors":"Guorong Cui, Hao Li, Yachuan Zhang, Rongjing Bu, Yan Kang, Jinyuan Li, Yang Hu","doi":"10.32604/jqc.2020.09717","DOIUrl":null,"url":null,"abstract":"The traditional K-means clustering algorithm is difficult to determine the cluster number, which is sensitive to the initialization of the clustering center and easy to fall into local optimum. This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO (Self-Organization Map and Weight Particle Swarm Optimization). Firstly, the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center. Then, the obtained clustering center is used as the initialization parameter of the weight particle swarm optimization algorithm. The particle position of the WPSO algorithm is determined by the traditional clustering center is improved to the sample weight, and the cluster center is the “food” of the particle group. Each particle moves toward the nearest cluster center. Each iteration optimizes the particle position and velocity and uses K-means and K-medoids recalculates cluster centers and cluster partitions until the end of the algorithm convergence iteration. After a lot of experimental analysis on the commonly used UCI data set, this paper not only solves the shortcomings of K-means clustering algorithm, the problem of dependence of the initial clustering center, and improves the accuracy of clustering, but also avoids falling into the local optimum. The algorithm has good global convergence.","PeriodicalId":284655,"journal":{"name":"Journal of Quantum Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps\",\"authors\":\"Guorong Cui, Hao Li, Yachuan Zhang, Rongjing Bu, Yan Kang, Jinyuan Li, Yang Hu\",\"doi\":\"10.32604/jqc.2020.09717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional K-means clustering algorithm is difficult to determine the cluster number, which is sensitive to the initialization of the clustering center and easy to fall into local optimum. This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO (Self-Organization Map and Weight Particle Swarm Optimization). Firstly, the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center. Then, the obtained clustering center is used as the initialization parameter of the weight particle swarm optimization algorithm. The particle position of the WPSO algorithm is determined by the traditional clustering center is improved to the sample weight, and the cluster center is the “food” of the particle group. Each particle moves toward the nearest cluster center. Each iteration optimizes the particle position and velocity and uses K-means and K-medoids recalculates cluster centers and cluster partitions until the end of the algorithm convergence iteration. After a lot of experimental analysis on the commonly used UCI data set, this paper not only solves the shortcomings of K-means clustering algorithm, the problem of dependence of the initial clustering center, and improves the accuracy of clustering, but also avoids falling into the local optimum. The algorithm has good global convergence.\",\"PeriodicalId\":284655,\"journal\":{\"name\":\"Journal of Quantum Computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/jqc.2020.09717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/jqc.2020.09717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的K-means聚类算法难以确定聚类数,对聚类中心初始化敏感,容易陷入局部最优。提出了一种基于自组织映射网络和权粒子群优化的聚类算法SOM&WPSO (Self-Organization Map and weight particle swarm optimization)。首先,该算法利用自组织映射网络的竞争学习机制,将数据样本划分为粗聚类并获得聚类中心;然后,将得到的聚类中心作为权重粒子群优化算法的初始化参数。WPSO算法通过将传统聚类中心改进为样本权值来确定粒子的位置,聚类中心是粒子群的“食物”。每个粒子都向最近的星团中心移动。每次迭代对粒子位置和速度进行优化,并使用K-means和K-medoids重新计算聚类中心和聚类分区,直到算法收敛迭代结束。通过对常用的UCI数据集进行大量的实验分析,本文不仅解决了K-means聚类算法的缺点,即初始聚类中心的依赖性问题,提高了聚类的精度,而且避免了陷入局部最优。该算法具有良好的全局收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps
The traditional K-means clustering algorithm is difficult to determine the cluster number, which is sensitive to the initialization of the clustering center and easy to fall into local optimum. This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO (Self-Organization Map and Weight Particle Swarm Optimization). Firstly, the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center. Then, the obtained clustering center is used as the initialization parameter of the weight particle swarm optimization algorithm. The particle position of the WPSO algorithm is determined by the traditional clustering center is improved to the sample weight, and the cluster center is the “food” of the particle group. Each particle moves toward the nearest cluster center. Each iteration optimizes the particle position and velocity and uses K-means and K-medoids recalculates cluster centers and cluster partitions until the end of the algorithm convergence iteration. After a lot of experimental analysis on the commonly used UCI data set, this paper not only solves the shortcomings of K-means clustering algorithm, the problem of dependence of the initial clustering center, and improves the accuracy of clustering, but also avoids falling into the local optimum. The algorithm has good global convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Cryptography–A Theoretical Overview An Ui Design Optimization Strategy for General App in Big Data Environment Analysis and Test on Influence Factors of Dew Drop Condensation in Dew Point Hygrometer Interpretation of the Entangled States T Application of MES System in the Safety Management of Offshore Oil and Gas Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1