使用预测分析来预测巴基斯坦的无人机袭击

U. Afzal, Tariq Mahmood
{"title":"使用预测分析来预测巴基斯坦的无人机袭击","authors":"U. Afzal, Tariq Mahmood","doi":"10.1109/ICICT.2013.6732785","DOIUrl":null,"url":null,"abstract":"Drones are autonomous aircrafts employed in conditions where manned flight is perilous. Drone-based attacks are made in Northern Pakistan with the intention of eliminating terrorists (in the context of US-led war of terror). In June 2004, the first drone strike killed one militant and four civilians; since then hundreds of attacks have killed thousands of people including accidental deaths of innocent children and women. To gauge the impact of future drone attacks, we apply time series forecasting on drone attack data to predict the frequency of different types of future attacks. On a reliable drone attack data set, we use IBM SPSS tool to learn four predictive models: 1) number of drone attacks, 2) number of militant casualties, 3) number of civilian casualties, and 4) number of injuries. Over our actual dataset, the prediction accuracy is maximized when we allow SPSS to automatically select the forecasting algorithm, as compared to a manual selection and configuration. We use automated selection to predict our four types of data for the six months, July 2013 till December 2013.","PeriodicalId":212608,"journal":{"name":"2013 5th International Conference on Information and Communication Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using predictive analytics to forecast drone attacks in Pakistan\",\"authors\":\"U. Afzal, Tariq Mahmood\",\"doi\":\"10.1109/ICICT.2013.6732785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones are autonomous aircrafts employed in conditions where manned flight is perilous. Drone-based attacks are made in Northern Pakistan with the intention of eliminating terrorists (in the context of US-led war of terror). In June 2004, the first drone strike killed one militant and four civilians; since then hundreds of attacks have killed thousands of people including accidental deaths of innocent children and women. To gauge the impact of future drone attacks, we apply time series forecasting on drone attack data to predict the frequency of different types of future attacks. On a reliable drone attack data set, we use IBM SPSS tool to learn four predictive models: 1) number of drone attacks, 2) number of militant casualties, 3) number of civilian casualties, and 4) number of injuries. Over our actual dataset, the prediction accuracy is maximized when we allow SPSS to automatically select the forecasting algorithm, as compared to a manual selection and configuration. We use automated selection to predict our four types of data for the six months, July 2013 till December 2013.\",\"PeriodicalId\":212608,\"journal\":{\"name\":\"2013 5th International Conference on Information and Communication Technologies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2013.6732785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2013.6732785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

无人机是在载人飞行危险的情况下使用的自主飞行器。以无人机为基础的袭击是在巴基斯坦北部进行的,目的是消灭恐怖分子(在美国领导的恐怖战争背景下)。2004年6月,第一次无人机袭击造成一名武装分子和四名平民死亡;自那时以来,数百次袭击造成数千人死亡,包括无辜儿童和妇女的意外死亡。为了衡量未来无人机攻击的影响,我们对无人机攻击数据应用时间序列预测来预测未来不同类型攻击的频率。在一个可靠的无人机袭击数据集上,我们使用IBM SPSS工具学习了四个预测模型:1)无人机袭击次数,2)武装分子伤亡人数,3)平民伤亡人数,4)受伤人数。在我们的实际数据集上,与手动选择和配置相比,当我们允许SPSS自动选择预测算法时,预测准确性最大化。我们使用自动选择来预测2013年7月至2013年12月这六个月的四种数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using predictive analytics to forecast drone attacks in Pakistan
Drones are autonomous aircrafts employed in conditions where manned flight is perilous. Drone-based attacks are made in Northern Pakistan with the intention of eliminating terrorists (in the context of US-led war of terror). In June 2004, the first drone strike killed one militant and four civilians; since then hundreds of attacks have killed thousands of people including accidental deaths of innocent children and women. To gauge the impact of future drone attacks, we apply time series forecasting on drone attack data to predict the frequency of different types of future attacks. On a reliable drone attack data set, we use IBM SPSS tool to learn four predictive models: 1) number of drone attacks, 2) number of militant casualties, 3) number of civilian casualties, and 4) number of injuries. Over our actual dataset, the prediction accuracy is maximized when we allow SPSS to automatically select the forecasting algorithm, as compared to a manual selection and configuration. We use automated selection to predict our four types of data for the six months, July 2013 till December 2013.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure user authentication in cloud computing A proposed model of a color harmonizer application Design and development of wireless RTU and cybersecurity framework for SCADA system Using predictive analytics to forecast drone attacks in Pakistan Real time finger counting and virtual drawing using color detection and shape recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1