G. Girezzi, D. Checcacci, L. Cosi, A. Maggi, Alessandro Sani, A. Achilli
{"title":"汽轮机结垢特性与设计试验台","authors":"G. Girezzi, D. Checcacci, L. Cosi, A. Maggi, Alessandro Sani, A. Achilli","doi":"10.1115/gt2021-59685","DOIUrl":null,"url":null,"abstract":"\n The fouling phenomenon addressed in this paper is related to the deposition within steam turbines of steam impurities and to the presence of solid debris, coming from upstream plant sections, that can create solid build-ups in stationary and moving parts inside the turbine. As a consequence, fouling causes unit efficiency decline but, in severe cases, it may also lead to sticking of moving components, such as valves, that may be critical in machine control and/or safety.\n Despite well-studied and well-considered in design and operation of large power utility plants, where steam quality is of primary importance for boilers, super-heaters, turbines and condensers, this subject is often overlooked in small power generation or industrial applications, where efficiency may be less critical but turbine availability is of paramount importance for plant operation (e.g. LNG plants).\n The steam fouling is a subject that, despite widely studied in the past, has been quite neglected in more recent years.\n This paper, with the aim of underlining the importance of fouling in the operation of turbines for industrial applications, starts with examples of field evidences of severe fouling. Then the design of a test bench for the experimental characterization of fouling rates and validation of turbine components, exposed to fouling conditions, is presented along with the description of the deposition models that were developed on the basis of the physical phenomena involved in the fouling process.\n This study addresses the main deposition physical principles and their implications in the thermodynamic design of the test bench, on the basis of the specific physical properties of the impurities of interest. To better match plant real cases, the contaminants tested included those which have been usually identified within the units during maintenance activities and for which specific limits are prescribed by OEMs.\n In the following section, details relevant to the main deposition mechanisms due to different geometries and flow-fields are discussed.\n The results obtained are qualitatively in line with literature and internal practices, yet, through the test activities, it has been possible to establish a quantitative relationship between the concentrations of each contaminant at inlet section and the different thermodynamic conditions along the test bench, so capturing the impact of solubility changes along with the steam expansion.","PeriodicalId":252904,"journal":{"name":"Volume 8: Oil and Gas Applications; Steam Turbine","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test Bench for Characterization and Design Against Steam Turbine Fouling\",\"authors\":\"G. Girezzi, D. Checcacci, L. Cosi, A. Maggi, Alessandro Sani, A. Achilli\",\"doi\":\"10.1115/gt2021-59685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The fouling phenomenon addressed in this paper is related to the deposition within steam turbines of steam impurities and to the presence of solid debris, coming from upstream plant sections, that can create solid build-ups in stationary and moving parts inside the turbine. As a consequence, fouling causes unit efficiency decline but, in severe cases, it may also lead to sticking of moving components, such as valves, that may be critical in machine control and/or safety.\\n Despite well-studied and well-considered in design and operation of large power utility plants, where steam quality is of primary importance for boilers, super-heaters, turbines and condensers, this subject is often overlooked in small power generation or industrial applications, where efficiency may be less critical but turbine availability is of paramount importance for plant operation (e.g. LNG plants).\\n The steam fouling is a subject that, despite widely studied in the past, has been quite neglected in more recent years.\\n This paper, with the aim of underlining the importance of fouling in the operation of turbines for industrial applications, starts with examples of field evidences of severe fouling. Then the design of a test bench for the experimental characterization of fouling rates and validation of turbine components, exposed to fouling conditions, is presented along with the description of the deposition models that were developed on the basis of the physical phenomena involved in the fouling process.\\n This study addresses the main deposition physical principles and their implications in the thermodynamic design of the test bench, on the basis of the specific physical properties of the impurities of interest. To better match plant real cases, the contaminants tested included those which have been usually identified within the units during maintenance activities and for which specific limits are prescribed by OEMs.\\n In the following section, details relevant to the main deposition mechanisms due to different geometries and flow-fields are discussed.\\n The results obtained are qualitatively in line with literature and internal practices, yet, through the test activities, it has been possible to establish a quantitative relationship between the concentrations of each contaminant at inlet section and the different thermodynamic conditions along the test bench, so capturing the impact of solubility changes along with the steam expansion.\",\"PeriodicalId\":252904,\"journal\":{\"name\":\"Volume 8: Oil and Gas Applications; Steam Turbine\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Oil and Gas Applications; Steam Turbine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Oil and Gas Applications; Steam Turbine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test Bench for Characterization and Design Against Steam Turbine Fouling
The fouling phenomenon addressed in this paper is related to the deposition within steam turbines of steam impurities and to the presence of solid debris, coming from upstream plant sections, that can create solid build-ups in stationary and moving parts inside the turbine. As a consequence, fouling causes unit efficiency decline but, in severe cases, it may also lead to sticking of moving components, such as valves, that may be critical in machine control and/or safety.
Despite well-studied and well-considered in design and operation of large power utility plants, where steam quality is of primary importance for boilers, super-heaters, turbines and condensers, this subject is often overlooked in small power generation or industrial applications, where efficiency may be less critical but turbine availability is of paramount importance for plant operation (e.g. LNG plants).
The steam fouling is a subject that, despite widely studied in the past, has been quite neglected in more recent years.
This paper, with the aim of underlining the importance of fouling in the operation of turbines for industrial applications, starts with examples of field evidences of severe fouling. Then the design of a test bench for the experimental characterization of fouling rates and validation of turbine components, exposed to fouling conditions, is presented along with the description of the deposition models that were developed on the basis of the physical phenomena involved in the fouling process.
This study addresses the main deposition physical principles and their implications in the thermodynamic design of the test bench, on the basis of the specific physical properties of the impurities of interest. To better match plant real cases, the contaminants tested included those which have been usually identified within the units during maintenance activities and for which specific limits are prescribed by OEMs.
In the following section, details relevant to the main deposition mechanisms due to different geometries and flow-fields are discussed.
The results obtained are qualitatively in line with literature and internal practices, yet, through the test activities, it has been possible to establish a quantitative relationship between the concentrations of each contaminant at inlet section and the different thermodynamic conditions along the test bench, so capturing the impact of solubility changes along with the steam expansion.