Deepfake视频的漏洞评估与检测

Pavel Korshunov, S. Marcel
{"title":"Deepfake视频的漏洞评估与检测","authors":"Pavel Korshunov, S. Marcel","doi":"10.1109/ICB45273.2019.8987375","DOIUrl":null,"url":null,"abstract":"It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Vulnerability assessment and detection of Deepfake videos\",\"authors\":\"Pavel Korshunov, S. Marcel\",\"doi\":\"10.1109/ICB45273.2019.8987375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

通过使用预训练的生成对抗网络(GAN),将视频中一个人的脸自动替换为另一个人的脸变得越来越容易。最近的公共丑闻,例如名人的面孔被交换到色情视频中,需要自动检测这些Deepfake视频的方法。为了帮助开发此类方法,在本文中,我们展示了从VidTIMIT数据库的视频中生成的第一个公开可用的Deepfake视频集。我们使用基于gan的开源软件来创建Deepfakes,我们强调训练和混合参数可以显著影响最终视频的质量。为了演示这种影响,我们使用不同的调优参数集生成了高质量和低质量的视频(各320个视频)。我们表明,基于VGG和Facenet神经网络的最先进的人脸识别系统很容易受到深度伪造视频的攻击,错误接受率分别为85.62%和95.00%(在高质量版本上),这意味着检测深度伪造视频的方法是必要的。通过考虑几种基线方法,我们发现了基于视觉质量指标的最佳性能方法,该方法通常用于表示攻击检测领域,对高质量的Deep-fakes产生8.97%的相等错误率。我们的实验表明,gan生成的Deepfake视频对人脸识别系统和现有的检测方法都是具有挑战性的,人脸交换技术的进一步发展将使其更加困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vulnerability assessment and detection of Deepfake videos
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1