Pinterest用户的行为细分

DUBMOD '14 Pub Date : 2014-11-03 DOI:10.1145/2665994.2666000
Jolie M. Martin
{"title":"Pinterest用户的行为细分","authors":"Jolie M. Martin","doi":"10.1145/2665994.2666000","DOIUrl":null,"url":null,"abstract":"Pinterest is a website and mobile application that allows users to discover, save, and share content ('pins') across a wide range of interest areas. As the user base grows more diverse both demographically and psychographically, we wish to understand emerging patterns of behavior that reflect underlying differences in users' intent and satisfaction with the service. In this paper, we propose a methodology for generating a meaningful segmentation of Pinterest users based on three types of behavior: (1) engagement with various categories of content, (2) frequencies of various types of actions, and (3) sequences of actions.","PeriodicalId":346862,"journal":{"name":"DUBMOD '14","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavioral Segmentation of Pinterest Users\",\"authors\":\"Jolie M. Martin\",\"doi\":\"10.1145/2665994.2666000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pinterest is a website and mobile application that allows users to discover, save, and share content ('pins') across a wide range of interest areas. As the user base grows more diverse both demographically and psychographically, we wish to understand emerging patterns of behavior that reflect underlying differences in users' intent and satisfaction with the service. In this paper, we propose a methodology for generating a meaningful segmentation of Pinterest users based on three types of behavior: (1) engagement with various categories of content, (2) frequencies of various types of actions, and (3) sequences of actions.\",\"PeriodicalId\":346862,\"journal\":{\"name\":\"DUBMOD '14\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DUBMOD '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2665994.2666000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DUBMOD '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2665994.2666000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Pinterest是一个网站和移动应用程序,允许用户在广泛的兴趣领域发现,保存和分享内容(“pins”)。随着用户群在人口统计学和心理学上变得更加多样化,我们希望了解反映用户意图和服务满意度潜在差异的新兴行为模式。在本文中,我们提出了一种基于三种行为类型生成有意义的Pinterest用户细分的方法:(1)参与各种类别的内容,(2)各种类型动作的频率,以及(3)动作序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavioral Segmentation of Pinterest Users
Pinterest is a website and mobile application that allows users to discover, save, and share content ('pins') across a wide range of interest areas. As the user base grows more diverse both demographically and psychographically, we wish to understand emerging patterns of behavior that reflect underlying differences in users' intent and satisfaction with the service. In this paper, we propose a methodology for generating a meaningful segmentation of Pinterest users based on three types of behavior: (1) engagement with various categories of content, (2) frequencies of various types of actions, and (3) sequences of actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral Segmentation of Pinterest Users Dare to Compare: Motivating Expertise Building in the Enterprise through Intelligent User Modeling Interfaces Enhanced Customer Churn Prediction using Social Network Analysis An Improved Collaborative Filtering Algorithm Combining User Activity Level PPLUM: A Framework for Large-Scale Personal Persuasion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1