小样本生存数据的jack- knife:当偏差满足方差以提高估计精度

Lubomír Štěpánek, Filip Habarta, I. Malá, L. Marek
{"title":"小样本生存数据的jack- knife:当偏差满足方差以提高估计精度","authors":"Lubomír Štěpánek, Filip Habarta, I. Malá, L. Marek","doi":"10.1109/ICCMA53594.2021.00030","DOIUrl":null,"url":null,"abstract":"Estimates performed particularly using small samples are a priori inaccurate. Furthermore, estimations of m-year survival rates, especially for large m ≫ 0, are inevitable of low precision because they are calculated as fractions with both low numerators and denominators. In this study, we use different degrees of jack-knifing of the original dataset used for m-year survival rates estimations to optimize the trade-off between decreasing variance (and increasing accuracy) and increasing bias of the estimates. Assuming the jack-knife enriches the original data in an allowed way since it does not generate new, non-existing observations, the results could suggest overcoming the small sample issue.","PeriodicalId":131082,"journal":{"name":"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jack-knifing in small samples of survival data: when bias meets variance to increase estimate precision\",\"authors\":\"Lubomír Štěpánek, Filip Habarta, I. Malá, L. Marek\",\"doi\":\"10.1109/ICCMA53594.2021.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimates performed particularly using small samples are a priori inaccurate. Furthermore, estimations of m-year survival rates, especially for large m ≫ 0, are inevitable of low precision because they are calculated as fractions with both low numerators and denominators. In this study, we use different degrees of jack-knifing of the original dataset used for m-year survival rates estimations to optimize the trade-off between decreasing variance (and increasing accuracy) and increasing bias of the estimates. Assuming the jack-knife enriches the original data in an allowed way since it does not generate new, non-existing observations, the results could suggest overcoming the small sample issue.\",\"PeriodicalId\":131082,\"journal\":{\"name\":\"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMA53594.2021.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA53594.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特别是使用小样本进行的估计先验上是不准确的。此外,m年存活率的估计,特别是对于大m > 0的存活率,由于其计算为分子和分母都很低的分数,因此精度低是不可避免的。在本研究中,我们对用于m年存活率估计的原始数据集使用不同程度的千斤顶刀,以优化估计的方差减少(和准确性提高)和偏差增加之间的权衡。假设“折刀法”以一种允许的方式丰富了原始数据,因为它不会产生新的、不存在的观测结果,那么结果可能建议克服小样本问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jack-knifing in small samples of survival data: when bias meets variance to increase estimate precision
Estimates performed particularly using small samples are a priori inaccurate. Furthermore, estimations of m-year survival rates, especially for large m ≫ 0, are inevitable of low precision because they are calculated as fractions with both low numerators and denominators. In this study, we use different degrees of jack-knifing of the original dataset used for m-year survival rates estimations to optimize the trade-off between decreasing variance (and increasing accuracy) and increasing bias of the estimates. Assuming the jack-knife enriches the original data in an allowed way since it does not generate new, non-existing observations, the results could suggest overcoming the small sample issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Botnet Attack Detection Using Principal Component Analysis and Ensemble Voting Algorithm Cyber Threat Ontology and Adversarial Machine Learning Attacks: Analysis and Prediction Perturbance Using Machine Learning to Predict Students’ Academic Performance During Covid-19 Jack-knifing in small samples of survival data: when bias meets variance to increase estimate precision Crime Predictive Model in Cybercrime based on Social and Economic Factors Using the Bayesian and Markov Theories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1