理解时态查询意图

Mohammed Hasanuzzaman, S. Saha, G. Dias, S. Ferrari
{"title":"理解时态查询意图","authors":"Mohammed Hasanuzzaman, S. Saha, G. Dias, S. Ferrari","doi":"10.1145/2766462.2767792","DOIUrl":null,"url":null,"abstract":"Understanding the temporal orientation of web search queries is an important issue for the success of information access systems. In this paper, we propose a multi-objective ensemble learning solution that (1) allows to accurately classify queries along their temporal intent and (2) identifies a set of performing solutions thus offering a wide range of possible applications. Experiments show that correct representation of the problem can lead to great classification improvements when compared to recent state-of-the-art solutions and baseline ensemble techniques.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"18 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Understanding Temporal Query Intent\",\"authors\":\"Mohammed Hasanuzzaman, S. Saha, G. Dias, S. Ferrari\",\"doi\":\"10.1145/2766462.2767792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the temporal orientation of web search queries is an important issue for the success of information access systems. In this paper, we propose a multi-objective ensemble learning solution that (1) allows to accurately classify queries along their temporal intent and (2) identifies a set of performing solutions thus offering a wide range of possible applications. Experiments show that correct representation of the problem can lead to great classification improvements when compared to recent state-of-the-art solutions and baseline ensemble techniques.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"18 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

了解网络搜索查询的时间方向是信息访问系统成功的一个重要问题。在本文中,我们提出了一个多目标集成学习解决方案,该解决方案(1)允许根据查询的时间意图对查询进行准确分类,(2)确定一组执行解决方案,从而提供广泛的可能应用。实验表明,与最近的最先进的解决方案和基线集成技术相比,对问题的正确表示可以带来很大的分类改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Temporal Query Intent
Understanding the temporal orientation of web search queries is an important issue for the success of information access systems. In this paper, we propose a multi-objective ensemble learning solution that (1) allows to accurately classify queries along their temporal intent and (2) identifies a set of performing solutions thus offering a wide range of possible applications. Experiments show that correct representation of the problem can lead to great classification improvements when compared to recent state-of-the-art solutions and baseline ensemble techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1