基于多标签和卷积神经网络的家庭负荷识别

Zhengquan Wang, Qi Xie
{"title":"基于多标签和卷积神经网络的家庭负荷识别","authors":"Zhengquan Wang, Qi Xie","doi":"10.1145/3556677.3556695","DOIUrl":null,"url":null,"abstract":"In low-voltage residential electricity scenarios, simple identification algorithms are difficult to be effective because of the many types of appliances and similar power characteristics. We propose a household load identification method based on multi-label and convolutional neural networks (ML-CNN) to address these problems. Firstly, we analyze the V-I trajectory characteristics of different loads and use the binary images of V-I trajectory mapping as the study features. Secondly, we collect the original steady-state voltage and current data of the combined operation of common household appliances and build a dataset. Finally, we pre-process and multi-label the dataset and input it into the ML-CNN network structure for training and validation. The experimental results show that the average identification accuracy of the ML-CNN method is 97.63%, which is better than the load identification methods such as multi-label k-nearest neighbor (ML-KNN) and support vector machine (SVM).","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"53 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Household Load Identification Based on Multi-label and Convolutional Neural Networks\",\"authors\":\"Zhengquan Wang, Qi Xie\",\"doi\":\"10.1145/3556677.3556695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In low-voltage residential electricity scenarios, simple identification algorithms are difficult to be effective because of the many types of appliances and similar power characteristics. We propose a household load identification method based on multi-label and convolutional neural networks (ML-CNN) to address these problems. Firstly, we analyze the V-I trajectory characteristics of different loads and use the binary images of V-I trajectory mapping as the study features. Secondly, we collect the original steady-state voltage and current data of the combined operation of common household appliances and build a dataset. Finally, we pre-process and multi-label the dataset and input it into the ML-CNN network structure for training and validation. The experimental results show that the average identification accuracy of the ML-CNN method is 97.63%, which is better than the load identification methods such as multi-label k-nearest neighbor (ML-KNN) and support vector machine (SVM).\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"53 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低压居民用电场景中,由于电器种类多、功率特性相似,简单的识别算法很难有效。为了解决这些问题,我们提出了一种基于多标签和卷积神经网络(ML-CNN)的家庭负荷识别方法。首先,分析了不同载荷的V-I轨迹特征,并以V-I轨迹映射的二值图像作为研究特征;其次,采集常用家电组合运行的原始稳态电压电流数据,建立数据集;最后,我们对数据集进行预处理和多标签,并将其输入到ML-CNN网络结构中进行训练和验证。实验结果表明,ML-CNN方法的平均识别准确率为97.63%,优于多标签k近邻(ML-KNN)和支持向量机(SVM)等负载识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Household Load Identification Based on Multi-label and Convolutional Neural Networks
In low-voltage residential electricity scenarios, simple identification algorithms are difficult to be effective because of the many types of appliances and similar power characteristics. We propose a household load identification method based on multi-label and convolutional neural networks (ML-CNN) to address these problems. Firstly, we analyze the V-I trajectory characteristics of different loads and use the binary images of V-I trajectory mapping as the study features. Secondly, we collect the original steady-state voltage and current data of the combined operation of common household appliances and build a dataset. Finally, we pre-process and multi-label the dataset and input it into the ML-CNN network structure for training and validation. The experimental results show that the average identification accuracy of the ML-CNN method is 97.63%, which is better than the load identification methods such as multi-label k-nearest neighbor (ML-KNN) and support vector machine (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1