利用低秩汉克尔结构的多通道缺失数据恢复

Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow
{"title":"利用低秩汉克尔结构的多通道缺失数据恢复","authors":"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow","doi":"10.1109/CAMSAP.2017.8313138","DOIUrl":null,"url":null,"abstract":"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"99 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Channel missing data recovery by exploiting the low-rank hankel structures\",\"authors\":\"Shuai Zhang, Yingshuai Hao, Meng Wang, J. Chow\",\"doi\":\"10.1109/CAMSAP.2017.8313138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"99 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文利用数据中的时间相关性研究了低秩矩阵补全问题。将低秩矩阵与动力系统(如电力系统)联系起来,我们提出了一种新的模型,称为多通道低秩汉克尔矩阵,以表征时间序列集合中的固有低维结构。提出了一种线性收敛的加速多通道快速迭代硬阈值法(AM-FIHT)来恢复缺失点。与传统的低等级完井方法相比,成功采出所需的观测层数显著减少。利用PMU的实测数据进行了数值实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Channel missing data recovery by exploiting the low-rank hankel structures
This paper studies the low-rank matrix completion problem by exploiting the temporal correlations in the data. Connecting low-rank matrices with dynamical systems such as power systems, we propose a new model, termed multi-channel low-rank Hankel matrices, to characterize the intrinsic low-dimensional structures in a collection of time series. An accelerated multi-channel fast iterative hard thresholding (AM-FIHT) with a linear convergence rate is proposed to recover the missing points. The required number of observed entries for successful recovery is significantly reduced from conventional low-rank completion methods. Numerical experiments are carried out on recorded PMU data to verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1