{"title":"温度对HDPE在Ni/Ce/Al2O3上催化热解的影响","authors":"V. Balasundram, N. Ibrahim, R. Isha","doi":"10.37934/ARMS.77.1.2635","DOIUrl":null,"url":null,"abstract":"The main objective of the current work is to investigate the influence of reaction temperature on catalytic pyrolysis of High-Density Polyurethane (HDPE) over Ni/Ce/Al2O3 into enriched hydrocarbons of pyrolytic oil and gas The experiments were performed at four different pyrolysis reaction temperatures (500, 600, 700, and 800 °C) via in-situ fixed bed reactor. The Al2O3 (75 wt.%) was used as a support, while nickel (20 wt.%) and cerium (5 wt.%) were impregnated as promoters via incipient wetness impregnation method. The catalyst to plastic mass ratio was kept constant at 1:1 for all investigated samples. The results revealed that the Ni/Ce/Al2O3 catalyst has synergistic effects on the catalytic pyrolysis of HDPE into a high yield of hydrocarbon compounds (C5 – C20) in pyrolytic oil and hydrogen gas composition in pyrolytic gas. The highest yield of pyrolytic oil was achieved at 700 °C (53.23 %), while the highest yield of pyrolytic gas was achieved at 800 °C (67.85 %). The small molecular hydrocarbons in pyrolytic oil (C5 - C9) decreases with increasing temperature from 500 to 800 °C. The highest hydrogen gas yield of 77.59 %. was achieved at 700 °C. Thus, this research has economic feasibility in producing alternative valuable energy from the plastic waste stream.","PeriodicalId":176840,"journal":{"name":"Journal of Advanced Research in Materials Science","volume":"327 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3\",\"authors\":\"V. Balasundram, N. Ibrahim, R. Isha\",\"doi\":\"10.37934/ARMS.77.1.2635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the current work is to investigate the influence of reaction temperature on catalytic pyrolysis of High-Density Polyurethane (HDPE) over Ni/Ce/Al2O3 into enriched hydrocarbons of pyrolytic oil and gas The experiments were performed at four different pyrolysis reaction temperatures (500, 600, 700, and 800 °C) via in-situ fixed bed reactor. The Al2O3 (75 wt.%) was used as a support, while nickel (20 wt.%) and cerium (5 wt.%) were impregnated as promoters via incipient wetness impregnation method. The catalyst to plastic mass ratio was kept constant at 1:1 for all investigated samples. The results revealed that the Ni/Ce/Al2O3 catalyst has synergistic effects on the catalytic pyrolysis of HDPE into a high yield of hydrocarbon compounds (C5 – C20) in pyrolytic oil and hydrogen gas composition in pyrolytic gas. The highest yield of pyrolytic oil was achieved at 700 °C (53.23 %), while the highest yield of pyrolytic gas was achieved at 800 °C (67.85 %). The small molecular hydrocarbons in pyrolytic oil (C5 - C9) decreases with increasing temperature from 500 to 800 °C. The highest hydrogen gas yield of 77.59 %. was achieved at 700 °C. Thus, this research has economic feasibility in producing alternative valuable energy from the plastic waste stream.\",\"PeriodicalId\":176840,\"journal\":{\"name\":\"Journal of Advanced Research in Materials Science\",\"volume\":\"327 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/ARMS.77.1.2635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/ARMS.77.1.2635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3
The main objective of the current work is to investigate the influence of reaction temperature on catalytic pyrolysis of High-Density Polyurethane (HDPE) over Ni/Ce/Al2O3 into enriched hydrocarbons of pyrolytic oil and gas The experiments were performed at four different pyrolysis reaction temperatures (500, 600, 700, and 800 °C) via in-situ fixed bed reactor. The Al2O3 (75 wt.%) was used as a support, while nickel (20 wt.%) and cerium (5 wt.%) were impregnated as promoters via incipient wetness impregnation method. The catalyst to plastic mass ratio was kept constant at 1:1 for all investigated samples. The results revealed that the Ni/Ce/Al2O3 catalyst has synergistic effects on the catalytic pyrolysis of HDPE into a high yield of hydrocarbon compounds (C5 – C20) in pyrolytic oil and hydrogen gas composition in pyrolytic gas. The highest yield of pyrolytic oil was achieved at 700 °C (53.23 %), while the highest yield of pyrolytic gas was achieved at 800 °C (67.85 %). The small molecular hydrocarbons in pyrolytic oil (C5 - C9) decreases with increasing temperature from 500 to 800 °C. The highest hydrogen gas yield of 77.59 %. was achieved at 700 °C. Thus, this research has economic feasibility in producing alternative valuable energy from the plastic waste stream.