类先验变化下的半监督充分降维

Hideko Kawakubo, Masashi Sugiyama
{"title":"类先验变化下的半监督充分降维","authors":"Hideko Kawakubo, Masashi Sugiyama","doi":"10.1109/TAAI.2016.7880182","DOIUrl":null,"url":null,"abstract":"Sufficient dimension reduction (SDR) is a popular framework for supervised dimension reduction, aiming at reducing the dimensionality of input data while information on output data is maximally maintained. On the other hand, in many recent supervised classification learning tasks, it is conceivable that the balance of samples in each class varies between the training and testing phases. Such a phenomenon, referred to as class-prior change, causes existing SDR methods to perform undesirably particularly when the training data is highly imbalanced. In this paper, we extend the state-of-the-art SDR method called leastsquares gradients for dimension reduction (LSGDR) to be able to cope with such class-prior change under the semi-supervised learning setup where unlabeled test data are available in addition to labeled training data. Through experiments, we demonstrate the usefulness of our proposed method.","PeriodicalId":159858,"journal":{"name":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"47 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised sufficient dimension reduction under class-prior change\",\"authors\":\"Hideko Kawakubo, Masashi Sugiyama\",\"doi\":\"10.1109/TAAI.2016.7880182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sufficient dimension reduction (SDR) is a popular framework for supervised dimension reduction, aiming at reducing the dimensionality of input data while information on output data is maximally maintained. On the other hand, in many recent supervised classification learning tasks, it is conceivable that the balance of samples in each class varies between the training and testing phases. Such a phenomenon, referred to as class-prior change, causes existing SDR methods to perform undesirably particularly when the training data is highly imbalanced. In this paper, we extend the state-of-the-art SDR method called leastsquares gradients for dimension reduction (LSGDR) to be able to cope with such class-prior change under the semi-supervised learning setup where unlabeled test data are available in addition to labeled training data. Through experiments, we demonstrate the usefulness of our proposed method.\",\"PeriodicalId\":159858,\"journal\":{\"name\":\"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"47 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2016.7880182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2016.7880182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

充分降维(SDR)是一种流行的监督降维框架,其目的是在最大限度地保持输出数据信息的同时降低输入数据的维数。另一方面,在最近的许多监督分类学习任务中,可以想象,在训练和测试阶段,每个类的样本平衡是不同的。这种现象被称为类先验变化(class-prior change),会导致现有SDR方法在训练数据高度不平衡的情况下表现不佳。在本文中,我们扩展了最先进的SDR方法,称为最小二乘降维梯度(LSGDR),以能够在半监督学习设置下处理这种类先验变化,其中除了标记训练数据外,还可以使用未标记的测试数据。通过实验,我们证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-supervised sufficient dimension reduction under class-prior change
Sufficient dimension reduction (SDR) is a popular framework for supervised dimension reduction, aiming at reducing the dimensionality of input data while information on output data is maximally maintained. On the other hand, in many recent supervised classification learning tasks, it is conceivable that the balance of samples in each class varies between the training and testing phases. Such a phenomenon, referred to as class-prior change, causes existing SDR methods to perform undesirably particularly when the training data is highly imbalanced. In this paper, we extend the state-of-the-art SDR method called leastsquares gradients for dimension reduction (LSGDR) to be able to cope with such class-prior change under the semi-supervised learning setup where unlabeled test data are available in addition to labeled training data. Through experiments, we demonstrate the usefulness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cluster-based opinion leader discovery in social network User behavior analysis and commodity recommendation for point-earning apps Extraction of proper names from myanmar text using latent dirichlet allocation Heuristic algorithm for target coverage with connectivity fault-tolerance problem in wireless sensor networks AFIS: Aligning detail-pages for full schema induction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1