扁平化COVID-19信息大流行曲线:这些评估活动可以提供帮助!

Preslav Nakov
{"title":"扁平化COVID-19信息大流行曲线:这些评估活动可以提供帮助!","authors":"Preslav Nakov","doi":"10.4000/BOOKS.AACCADEMIA.6752","DOIUrl":null,"url":null,"abstract":"The World Health Organization acknowledged that “The 2019-nCoV outbreak and response has been accompanied by a massive ‘infodemic’ ... that makes it hard for people to find trustworthy sources and reliable guidance when they need it.” While fighting this infodemic is typically thought of in terms of factuality, the problem is much broader as malicious content includes not only “fake news”, rumors, and conspiracy theories, but also promotion of fake cures, panic, racism, xenophobia, and mistrust in the authorities, among others. Thus, we argue for the need of a holistic approach combining the perspectives of journalists, fact-checkers, policymakers, social media platforms, and society as a whole, and we present our initial work in this direction. We further discuss evaluation campaigns at CLEF and SemEval that feature relevant tasks (not necessarily focusing on COVID-19). One relevant evaluation campaign is the CLEF CheckThat! Lab, which has focused on tasks that make human fact-checkers more productive: spotting check-worthy claims (in tweets, political debates, and speeches), determining whether these claims have been previously factchecked, retrieving relevant pages and passages, and finally, making a prediction about the factuality of the claims. There have been also a number of relevant SemEval tasks related to factuality, e.g., on rumor detection and verification in social media, on fact-checking in community question answering forums, and on stance detection. Other relevant SemEval tasks have looked beyond factuality, focusing on intent, e.g., on offensive language detection in social media, as well as on spotting the use of propaganda techniques (e.g., appeal to emotions, fear, prejudices, logical fallacies, etc.) in the news and in memes (text + image). Of course, relevant tasks can be also found beyond CLEF and SemEval; most notably, this includes FEVER and the Fake News Challenge. Finally, we demonstrate two systems developed at the Qatar Computing Research Institute, HBKU, to address some of the above challenges: one reflecting the proposed holistic approach, and one on fine-grained propagada detection. The latter system, Prta (https://www.tanbih.org/prta), was featured at ACL-2020 with a Best Demo Award (Honorable Mention).","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"15 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flattening the Curve of the COVID-19 Infodemic: These Evaluation Campaigns Can Help!\",\"authors\":\"Preslav Nakov\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The World Health Organization acknowledged that “The 2019-nCoV outbreak and response has been accompanied by a massive ‘infodemic’ ... that makes it hard for people to find trustworthy sources and reliable guidance when they need it.” While fighting this infodemic is typically thought of in terms of factuality, the problem is much broader as malicious content includes not only “fake news”, rumors, and conspiracy theories, but also promotion of fake cures, panic, racism, xenophobia, and mistrust in the authorities, among others. Thus, we argue for the need of a holistic approach combining the perspectives of journalists, fact-checkers, policymakers, social media platforms, and society as a whole, and we present our initial work in this direction. We further discuss evaluation campaigns at CLEF and SemEval that feature relevant tasks (not necessarily focusing on COVID-19). One relevant evaluation campaign is the CLEF CheckThat! Lab, which has focused on tasks that make human fact-checkers more productive: spotting check-worthy claims (in tweets, political debates, and speeches), determining whether these claims have been previously factchecked, retrieving relevant pages and passages, and finally, making a prediction about the factuality of the claims. There have been also a number of relevant SemEval tasks related to factuality, e.g., on rumor detection and verification in social media, on fact-checking in community question answering forums, and on stance detection. Other relevant SemEval tasks have looked beyond factuality, focusing on intent, e.g., on offensive language detection in social media, as well as on spotting the use of propaganda techniques (e.g., appeal to emotions, fear, prejudices, logical fallacies, etc.) in the news and in memes (text + image). Of course, relevant tasks can be also found beyond CLEF and SemEval; most notably, this includes FEVER and the Fake News Challenge. Finally, we demonstrate two systems developed at the Qatar Computing Research Institute, HBKU, to address some of the above challenges: one reflecting the proposed holistic approach, and one on fine-grained propagada detection. The latter system, Prta (https://www.tanbih.org/prta), was featured at ACL-2020 with a Best Demo Award (Honorable Mention).\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"15 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界卫生组织承认,“2019-nCoV的爆发和应对伴随着大规模的‘信息大流行’……这使得人们在需要的时候很难找到值得信赖的资源和可靠的指导。”虽然打击这种信息泛滥通常是根据事实来考虑的,但问题要广泛得多,因为恶意内容不仅包括“假新闻”、谣言和阴谋论,还包括宣传假药、恐慌、种族主义、仇外心理和对当局的不信任等。因此,我们认为需要一种综合记者、事实核查员、政策制定者、社交媒体平台和整个社会的观点的整体方法,我们在这个方向上展示了我们的初步工作。我们进一步讨论CLEF和SemEval的评估活动,这些活动以相关任务为特色(不一定以COVID-19为重点)。一个相关的评估活动是CLEF CheckThat!该实验室专注于让人类事实核查员更有效率的任务:发现值得核查的声明(在推特、政治辩论和演讲中),确定这些声明之前是否经过事实核查,检索相关页面和段落,最后,对声明的真实性做出预测。还有一些与事实相关的SemEval任务,例如社交媒体中的谣言检测和验证,社区问答论坛中的事实检查以及立场检测。其他相关的SemEval任务已经超越了事实,专注于意图,例如,社交媒体中的攻击性语言检测,以及在新闻和模因(文本+图像)中发现宣传技术的使用(例如,诉诸情感,恐惧,偏见,逻辑谬误等)。当然,除了CLEF和SemEval之外,还可以找到相关的任务;最值得注意的是,这包括FEVER和假新闻挑战。最后,我们展示了由卡塔尔计算研究所(HBKU)开发的两个系统,以解决上述一些挑战:一个反映了所建议的整体方法,另一个反映了细粒度传播检测。后一种系统Prta (https://www.tanbih.org/prta)在ACL-2020上获得了最佳演示奖(荣誉奖)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flattening the Curve of the COVID-19 Infodemic: These Evaluation Campaigns Can Help!
The World Health Organization acknowledged that “The 2019-nCoV outbreak and response has been accompanied by a massive ‘infodemic’ ... that makes it hard for people to find trustworthy sources and reliable guidance when they need it.” While fighting this infodemic is typically thought of in terms of factuality, the problem is much broader as malicious content includes not only “fake news”, rumors, and conspiracy theories, but also promotion of fake cures, panic, racism, xenophobia, and mistrust in the authorities, among others. Thus, we argue for the need of a holistic approach combining the perspectives of journalists, fact-checkers, policymakers, social media platforms, and society as a whole, and we present our initial work in this direction. We further discuss evaluation campaigns at CLEF and SemEval that feature relevant tasks (not necessarily focusing on COVID-19). One relevant evaluation campaign is the CLEF CheckThat! Lab, which has focused on tasks that make human fact-checkers more productive: spotting check-worthy claims (in tweets, political debates, and speeches), determining whether these claims have been previously factchecked, retrieving relevant pages and passages, and finally, making a prediction about the factuality of the claims. There have been also a number of relevant SemEval tasks related to factuality, e.g., on rumor detection and verification in social media, on fact-checking in community question answering forums, and on stance detection. Other relevant SemEval tasks have looked beyond factuality, focusing on intent, e.g., on offensive language detection in social media, as well as on spotting the use of propaganda techniques (e.g., appeal to emotions, fear, prejudices, logical fallacies, etc.) in the news and in memes (text + image). Of course, relevant tasks can be also found beyond CLEF and SemEval; most notably, this includes FEVER and the Fake News Challenge. Finally, we demonstrate two systems developed at the Qatar Computing Research Institute, HBKU, to address some of the above challenges: one reflecting the proposed holistic approach, and one on fine-grained propagada detection. The latter system, Prta (https://www.tanbih.org/prta), was featured at ACL-2020 with a Best Demo Award (Honorable Mention).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1