{"title":"通过k部极大团挖掘分类数据中的子空间聚类","authors":"Mohammed J. Zaki, M. Peters","doi":"10.1109/ICDE.2005.33","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm called CLICKS, that finds clusters in categorical datasets based on a search for k-partite maximal cliques. Unlike previous methods, CLICKS mines subspace clusters. It uses a selective vertical method to guarantee complete search. CLICKS outperforms previous approaches by over an order of magnitude and scales better than any of the existing method for high-dimensional datasets. We demonstrate this improvement in an excerpt from our comprehensive performance studies.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"7 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"CLICKS: Mining Subspace Clusters in Categorical Data via K-Partite Maximal Cliques\",\"authors\":\"Mohammed J. Zaki, M. Peters\",\"doi\":\"10.1109/ICDE.2005.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm called CLICKS, that finds clusters in categorical datasets based on a search for k-partite maximal cliques. Unlike previous methods, CLICKS mines subspace clusters. It uses a selective vertical method to guarantee complete search. CLICKS outperforms previous approaches by over an order of magnitude and scales better than any of the existing method for high-dimensional datasets. We demonstrate this improvement in an excerpt from our comprehensive performance studies.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"7 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CLICKS: Mining Subspace Clusters in Categorical Data via K-Partite Maximal Cliques
We present a novel algorithm called CLICKS, that finds clusters in categorical datasets based on a search for k-partite maximal cliques. Unlike previous methods, CLICKS mines subspace clusters. It uses a selective vertical method to guarantee complete search. CLICKS outperforms previous approaches by over an order of magnitude and scales better than any of the existing method for high-dimensional datasets. We demonstrate this improvement in an excerpt from our comprehensive performance studies.