{"title":"变截面梁自由弯曲振动问题的积分-微分关系","authors":"V. Saurin","doi":"10.32326/1814-9146-2019-81-4-449-460","DOIUrl":null,"url":null,"abstract":"Issues related to eigen-vibrations of elastic beams of variable cross-section are discussed. It is noted that one of the common features characteristic of boundary-value problems of mathematical physics is certain ambiguity of their formulations. A boundary-value problem of determining eigen-frequencies of a variable cross-section beam in displacements is formulated. By introducing new variables characterizing the behavior of the system, the boundary-value problem is reduced to three ordinary differential equations with variable coefficients. The new variables have a distinct physical meaning. One of the functions is linear density of the pulse and the other is bending moment in the cross-section of the beam. Such a formulation of the problem of free vibrations of a variable cross-section beam makes it possible to reduce the system of differential equations to a single fourth-order equation written in terms of pulse functions. This equation is equivalent to the initial one, formulated in displacements, but has a different form. A method of integral-differential relations, alternative to classical numerical approaches, is described. The possibility of constructing various bilateral energy-based evaluations of the accuracy of approximate solutions resulting from the method of integral-differential relations is studied. The projection approach to analyzing spectral problems of nonlinear beam theory is considered. The efficiency of the method of integral-differential equations is demonstrated, using the problem of free vibrations of a rectangular beam with a constructional depth quadratically varying along its length. Energy-based evaluations of the accuracy of the approximate solutions constructed using polynomial approximations of the sought functions are presented. It is shown that applying standard Bubnov-Galerkin's method to the problem of free vibrations leads to the appearance of complex eigen-frequencies. At the same time, the ratio of the imaginary component to the real one of the eigen-value is a relative inaccuracy of the solution of the boundary-value problem. The introduced numerical algorithm makes it possible to evaluate unambiguously the local and integral quality of numerical solutions obtained.","PeriodicalId":340995,"journal":{"name":"Problems of strenght and plasticity","volume":"23 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INTEGRAL-DIFFERENTIAL RELATIONS IN THE PROBLEM OF FREE BENDING VIBRATIONS OF VARIABLE CROSS-SECTION BEAMS\",\"authors\":\"V. Saurin\",\"doi\":\"10.32326/1814-9146-2019-81-4-449-460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Issues related to eigen-vibrations of elastic beams of variable cross-section are discussed. It is noted that one of the common features characteristic of boundary-value problems of mathematical physics is certain ambiguity of their formulations. A boundary-value problem of determining eigen-frequencies of a variable cross-section beam in displacements is formulated. By introducing new variables characterizing the behavior of the system, the boundary-value problem is reduced to three ordinary differential equations with variable coefficients. The new variables have a distinct physical meaning. One of the functions is linear density of the pulse and the other is bending moment in the cross-section of the beam. Such a formulation of the problem of free vibrations of a variable cross-section beam makes it possible to reduce the system of differential equations to a single fourth-order equation written in terms of pulse functions. This equation is equivalent to the initial one, formulated in displacements, but has a different form. A method of integral-differential relations, alternative to classical numerical approaches, is described. The possibility of constructing various bilateral energy-based evaluations of the accuracy of approximate solutions resulting from the method of integral-differential relations is studied. The projection approach to analyzing spectral problems of nonlinear beam theory is considered. The efficiency of the method of integral-differential equations is demonstrated, using the problem of free vibrations of a rectangular beam with a constructional depth quadratically varying along its length. Energy-based evaluations of the accuracy of the approximate solutions constructed using polynomial approximations of the sought functions are presented. It is shown that applying standard Bubnov-Galerkin's method to the problem of free vibrations leads to the appearance of complex eigen-frequencies. At the same time, the ratio of the imaginary component to the real one of the eigen-value is a relative inaccuracy of the solution of the boundary-value problem. The introduced numerical algorithm makes it possible to evaluate unambiguously the local and integral quality of numerical solutions obtained.\",\"PeriodicalId\":340995,\"journal\":{\"name\":\"Problems of strenght and plasticity\",\"volume\":\"23 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of strenght and plasticity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32326/1814-9146-2019-81-4-449-460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of strenght and plasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32326/1814-9146-2019-81-4-449-460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INTEGRAL-DIFFERENTIAL RELATIONS IN THE PROBLEM OF FREE BENDING VIBRATIONS OF VARIABLE CROSS-SECTION BEAMS
Issues related to eigen-vibrations of elastic beams of variable cross-section are discussed. It is noted that one of the common features characteristic of boundary-value problems of mathematical physics is certain ambiguity of their formulations. A boundary-value problem of determining eigen-frequencies of a variable cross-section beam in displacements is formulated. By introducing new variables characterizing the behavior of the system, the boundary-value problem is reduced to three ordinary differential equations with variable coefficients. The new variables have a distinct physical meaning. One of the functions is linear density of the pulse and the other is bending moment in the cross-section of the beam. Such a formulation of the problem of free vibrations of a variable cross-section beam makes it possible to reduce the system of differential equations to a single fourth-order equation written in terms of pulse functions. This equation is equivalent to the initial one, formulated in displacements, but has a different form. A method of integral-differential relations, alternative to classical numerical approaches, is described. The possibility of constructing various bilateral energy-based evaluations of the accuracy of approximate solutions resulting from the method of integral-differential relations is studied. The projection approach to analyzing spectral problems of nonlinear beam theory is considered. The efficiency of the method of integral-differential equations is demonstrated, using the problem of free vibrations of a rectangular beam with a constructional depth quadratically varying along its length. Energy-based evaluations of the accuracy of the approximate solutions constructed using polynomial approximations of the sought functions are presented. It is shown that applying standard Bubnov-Galerkin's method to the problem of free vibrations leads to the appearance of complex eigen-frequencies. At the same time, the ratio of the imaginary component to the real one of the eigen-value is a relative inaccuracy of the solution of the boundary-value problem. The introduced numerical algorithm makes it possible to evaluate unambiguously the local and integral quality of numerical solutions obtained.