{"title":"使用SIMD指令的快速整数压缩","authors":"B. Schlegel, Rainer Gemulla, Wolfgang Lehner","doi":"10.1145/1869389.1869394","DOIUrl":null,"url":null,"abstract":"We study algorithms for efficient compression and decompression of a sequence of integers on modern hardware. Our focus is on universal codes in which the codeword length is a monotonically non-decreasing function of the uncompressed integer value; such codes are widely used for compressing \"small integers\". In contrast to traditional integer compression, our algorithms make use of the SIMD capabilities of modern processors by encoding multiple integer values at once. More specifically, we provide SIMD versions of both null suppression and Elias gamma encoding. Our experiments show that these versions provide a speedup from 1.5x up to 6.7x for decompression, while maintaining a similar compression performance.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Fast integer compression using SIMD instructions\",\"authors\":\"B. Schlegel, Rainer Gemulla, Wolfgang Lehner\",\"doi\":\"10.1145/1869389.1869394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study algorithms for efficient compression and decompression of a sequence of integers on modern hardware. Our focus is on universal codes in which the codeword length is a monotonically non-decreasing function of the uncompressed integer value; such codes are widely used for compressing \\\"small integers\\\". In contrast to traditional integer compression, our algorithms make use of the SIMD capabilities of modern processors by encoding multiple integer values at once. More specifically, we provide SIMD versions of both null suppression and Elias gamma encoding. Our experiments show that these versions provide a speedup from 1.5x up to 6.7x for decompression, while maintaining a similar compression performance.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869389.1869394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869389.1869394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study algorithms for efficient compression and decompression of a sequence of integers on modern hardware. Our focus is on universal codes in which the codeword length is a monotonically non-decreasing function of the uncompressed integer value; such codes are widely used for compressing "small integers". In contrast to traditional integer compression, our algorithms make use of the SIMD capabilities of modern processors by encoding multiple integer values at once. More specifically, we provide SIMD versions of both null suppression and Elias gamma encoding. Our experiments show that these versions provide a speedup from 1.5x up to 6.7x for decompression, while maintaining a similar compression performance.