基于p范数的图像检索特征聚合统一框架

Jun Zhang, Lei Ye
{"title":"基于p范数的图像检索特征聚合统一框架","authors":"Jun Zhang, Lei Ye","doi":"10.1109/ISM.2007.22","DOIUrl":null,"url":null,"abstract":"Feature aggregation is a critical technique in content- based image retrieval systems that employ multiple visual features to characterize image content. In this paper, the p-norm is introduced to feature aggregation that provides a framework to unify various previous feature aggregation schemes such as linear combination, Euclidean distance, Boolean logic and decision fusion schemes in which previous schemes are instances. Some insights of the mechanism of how various aggregation schemes work are discussed through the effects of model parameters in the unified framework. Experiments show that performances vary over feature aggregation schemes that necessitates an unified framework in order to optimize the retrieval performance according to individual queries and user query concept. Revealing experimental results conducted with IAPR TC-12 ImageCLEF2006 benchmark collection that contains over 20,000 photographic images are presented and discussed.","PeriodicalId":129680,"journal":{"name":"Ninth IEEE International Symposium on Multimedia (ISM 2007)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Unified Framework Based on p-Norm for Feature Aggregation in Content-Based Image Retrieval\",\"authors\":\"Jun Zhang, Lei Ye\",\"doi\":\"10.1109/ISM.2007.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature aggregation is a critical technique in content- based image retrieval systems that employ multiple visual features to characterize image content. In this paper, the p-norm is introduced to feature aggregation that provides a framework to unify various previous feature aggregation schemes such as linear combination, Euclidean distance, Boolean logic and decision fusion schemes in which previous schemes are instances. Some insights of the mechanism of how various aggregation schemes work are discussed through the effects of model parameters in the unified framework. Experiments show that performances vary over feature aggregation schemes that necessitates an unified framework in order to optimize the retrieval performance according to individual queries and user query concept. Revealing experimental results conducted with IAPR TC-12 ImageCLEF2006 benchmark collection that contains over 20,000 photographic images are presented and discussed.\",\"PeriodicalId\":129680,\"journal\":{\"name\":\"Ninth IEEE International Symposium on Multimedia (ISM 2007)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth IEEE International Symposium on Multimedia (ISM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2007.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth IEEE International Symposium on Multimedia (ISM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2007.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

特征聚合是基于内容的图像检索系统中的一项关键技术,它利用多个视觉特征来描述图像内容。本文将p范数引入到特征聚合中,提供了一个框架来统一各种先前的特征聚合方案,如线性组合、欧氏距离、布尔逻辑和决策融合方案。通过模型参数在统一框架中的影响,讨论了各种聚合方案工作机制的一些见解。实验表明,不同的特征聚合方案的检索性能存在差异,因此需要一个统一的框架来根据单个查询和用户查询概念来优化检索性能。本文介绍并讨论了使用IAPR TC-12 ImageCLEF2006基准集进行的揭示性实验结果,该基准集包含20,000多张摄影图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Unified Framework Based on p-Norm for Feature Aggregation in Content-Based Image Retrieval
Feature aggregation is a critical technique in content- based image retrieval systems that employ multiple visual features to characterize image content. In this paper, the p-norm is introduced to feature aggregation that provides a framework to unify various previous feature aggregation schemes such as linear combination, Euclidean distance, Boolean logic and decision fusion schemes in which previous schemes are instances. Some insights of the mechanism of how various aggregation schemes work are discussed through the effects of model parameters in the unified framework. Experiments show that performances vary over feature aggregation schemes that necessitates an unified framework in order to optimize the retrieval performance according to individual queries and user query concept. Revealing experimental results conducted with IAPR TC-12 ImageCLEF2006 benchmark collection that contains over 20,000 photographic images are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Image Compression Scheme Based on Locally Adaptive Coding The Design of a Multi-party VoIP Conferencing System over the Internet Analysis of a New Ubiquitous Multimodal Multimedia Computing System Summarization of Wearable Videos Based on User Activity Analysis Local Binary Patterns for Human Detection on Hexagonal Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1