塑性变形下异种材料的接触机理

IF 1 4区 工程技术 Q4 MECHANICS Comptes Rendus Mecanique Pub Date : 2019-08-01 DOI:10.1016/j.crme.2019.07.002
Denis Salikhyanov
{"title":"塑性变形下异种材料的接触机理","authors":"Denis Salikhyanov","doi":"10.1016/j.crme.2019.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The description of the new contact mechanism between dissimilar materials during joint plastic deformation is proposed in this paper. To analyze the process of joint deformation of composite material layers, a multi-stage analytical model was developed based on the study of the contact interaction between the surfaces of the materials to be bonded using the slip line method. When mathematical simulation of the process of joint deformation of dissimilar materials, the influence of the geometrical surface profile of a harder layer of a composite, as a more significant factor, was estimated. For the entire range of influence of the investigated geometrical surface profile of a harder material of a composite, the final forming and stress state parameters in its intermediate zone were determined. To verify the analytical model, computer simulation of the process of joint deformation of composite material layers by the finite element method in two-dimensional formulation was carried out. The comparison of both solutions has confirmed the adequacy of the results obtained in the mathematical simulation. The theoretical model can be used in the development of bonding mechanisms between dissimilar materials, in the development of manufacturing technologies of new clad composite materials, as well as in the analysis and improvement of the existing manufacturing technologies of clad composite materials.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.07.002","citationCount":"8","resultStr":"{\"title\":\"Contact mechanism between dissimilar materials under plastic deformation\",\"authors\":\"Denis Salikhyanov\",\"doi\":\"10.1016/j.crme.2019.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The description of the new contact mechanism between dissimilar materials during joint plastic deformation is proposed in this paper. To analyze the process of joint deformation of composite material layers, a multi-stage analytical model was developed based on the study of the contact interaction between the surfaces of the materials to be bonded using the slip line method. When mathematical simulation of the process of joint deformation of dissimilar materials, the influence of the geometrical surface profile of a harder layer of a composite, as a more significant factor, was estimated. For the entire range of influence of the investigated geometrical surface profile of a harder material of a composite, the final forming and stress state parameters in its intermediate zone were determined. To verify the analytical model, computer simulation of the process of joint deformation of composite material layers by the finite element method in two-dimensional formulation was carried out. The comparison of both solutions has confirmed the adequacy of the results obtained in the mathematical simulation. The theoretical model can be used in the development of bonding mechanisms between dissimilar materials, in the development of manufacturing technologies of new clad composite materials, as well as in the analysis and improvement of the existing manufacturing technologies of clad composite materials.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.07.002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301214\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 8

摘要

本文对节理塑性变形过程中异种材料之间新的接触机制进行了描述。为了分析复合材料层间的接合变形过程,采用滑移线法研究了待接合材料表面之间的接触相互作用,建立了多阶段分析模型。在对异种材料接头变形过程进行数学模拟时,估计了复合材料较硬层的几何表面轮廓作为一个更重要的因素对接头变形的影响。对于所研究的硬质复合材料几何表面轮廓的整个影响范围,确定了其中间区域的最终成形和应力状态参数。为了验证解析模型的正确性,采用二维有限元方法对复合材料层间接头变形过程进行了计算机模拟。两种解的比较证实了数学模拟结果的充分性。该理论模型可用于异种材料间键合机理的研究、新型复合材料制造技术的开发以及对现有复合材料制造技术的分析和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contact mechanism between dissimilar materials under plastic deformation

The description of the new contact mechanism between dissimilar materials during joint plastic deformation is proposed in this paper. To analyze the process of joint deformation of composite material layers, a multi-stage analytical model was developed based on the study of the contact interaction between the surfaces of the materials to be bonded using the slip line method. When mathematical simulation of the process of joint deformation of dissimilar materials, the influence of the geometrical surface profile of a harder layer of a composite, as a more significant factor, was estimated. For the entire range of influence of the investigated geometrical surface profile of a harder material of a composite, the final forming and stress state parameters in its intermediate zone were determined. To verify the analytical model, computer simulation of the process of joint deformation of composite material layers by the finite element method in two-dimensional formulation was carried out. The comparison of both solutions has confirmed the adequacy of the results obtained in the mathematical simulation. The theoretical model can be used in the development of bonding mechanisms between dissimilar materials, in the development of manufacturing technologies of new clad composite materials, as well as in the analysis and improvement of the existing manufacturing technologies of clad composite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
期刊最新文献
Vortex-induced vibration of a square cylinder in wind tunnel Large-scale smooth plastic topology optimization using domain decomposition The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form 2D model simulating the hydro-rheological behavior of leather during convective drying Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1