{"title":"基于传感器的导航通过改变方向来跟随遇到的障碍物","authors":"H. Noborio, T. Yoshioka, Shoji Tominaga","doi":"10.1109/IROS.1997.655060","DOIUrl":null,"url":null,"abstract":"In the last decade, many sensor-based navigation algorithms have been proposed. In the sensor-based navigation, a robot arrives at its goal globally while avoiding neighbor obstacles locally by sensor information. In every environment, a mobile robot arrives at its goal surely. However if an environment has complicated shape, a mobile robot sometimes joins a loop and consequently runs long until its goal. In general, a loop consists of routes which a robot follows obstacles in the same direction. Nevertheless in most previous algorithms, a mobile robot follows an encountered obstacle in a constant direction. On this observation, a robot is exempted from participation of a loop by reversing a direction to follow an obstacle. The authors discuss algorithms in which the following direction is alternatively changed. This strategy has been adopted by cockroaches living in a natural environment. They then propose algorithms in which the following direction is randomly reversed. Then they compare paths generated by constant, alternative, and random selections in Bug2 and Classl under a graphics simulator for 2D complicated environments.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"41 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On the sensor-based navigation by changing a direction to follow an encountered obstacle\",\"authors\":\"H. Noborio, T. Yoshioka, Shoji Tominaga\",\"doi\":\"10.1109/IROS.1997.655060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, many sensor-based navigation algorithms have been proposed. In the sensor-based navigation, a robot arrives at its goal globally while avoiding neighbor obstacles locally by sensor information. In every environment, a mobile robot arrives at its goal surely. However if an environment has complicated shape, a mobile robot sometimes joins a loop and consequently runs long until its goal. In general, a loop consists of routes which a robot follows obstacles in the same direction. Nevertheless in most previous algorithms, a mobile robot follows an encountered obstacle in a constant direction. On this observation, a robot is exempted from participation of a loop by reversing a direction to follow an obstacle. The authors discuss algorithms in which the following direction is alternatively changed. This strategy has been adopted by cockroaches living in a natural environment. They then propose algorithms in which the following direction is randomly reversed. Then they compare paths generated by constant, alternative, and random selections in Bug2 and Classl under a graphics simulator for 2D complicated environments.\",\"PeriodicalId\":408848,\"journal\":{\"name\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"volume\":\"41 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1997.655060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the sensor-based navigation by changing a direction to follow an encountered obstacle
In the last decade, many sensor-based navigation algorithms have been proposed. In the sensor-based navigation, a robot arrives at its goal globally while avoiding neighbor obstacles locally by sensor information. In every environment, a mobile robot arrives at its goal surely. However if an environment has complicated shape, a mobile robot sometimes joins a loop and consequently runs long until its goal. In general, a loop consists of routes which a robot follows obstacles in the same direction. Nevertheless in most previous algorithms, a mobile robot follows an encountered obstacle in a constant direction. On this observation, a robot is exempted from participation of a loop by reversing a direction to follow an obstacle. The authors discuss algorithms in which the following direction is alternatively changed. This strategy has been adopted by cockroaches living in a natural environment. They then propose algorithms in which the following direction is randomly reversed. Then they compare paths generated by constant, alternative, and random selections in Bug2 and Classl under a graphics simulator for 2D complicated environments.