基于百万像素彩色眼底照片的多标签疾病分类

Honggang Yang, Jiejie Chen, Rong Luan, Mengfei Xu, Lin Ma, Xiaoqi Zhou
{"title":"基于百万像素彩色眼底照片的多标签疾病分类","authors":"Honggang Yang, Jiejie Chen, Rong Luan, Mengfei Xu, Lin Ma, Xiaoqi Zhou","doi":"10.1109/icaci55529.2022.9837676","DOIUrl":null,"url":null,"abstract":"This paper discusses a new challenge of artificial intelligence in predicting fundus diseases: using only unprocessed million pixel Color Fundus Photos(CFP) to complete multi-label multi classification and lesion location tasks at the same time. In order to solve this problem, Double Flow Multi Instance Neural Network(DF-MINN) is designed. Df-MINN is an end-to-end dual flow network. It uses Multi Instance Spatial Attention(MISA) module to extract local information and Global Priorities Network base on Involvement(GPNI) module to analyze the overall content. In addition, experiments on the open multi label fundus dataset OIA-ODIR showed that DF-MINN was higher average precision than the previous network in the prediction of all seven diseases. Ablation experiments further proved the importance of high-resolution images in the diagnosis of fundus diseases.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"EM-34 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Base on Megapixel Color Fundus Photos for Multi-label Disease Classification\",\"authors\":\"Honggang Yang, Jiejie Chen, Rong Luan, Mengfei Xu, Lin Ma, Xiaoqi Zhou\",\"doi\":\"10.1109/icaci55529.2022.9837676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a new challenge of artificial intelligence in predicting fundus diseases: using only unprocessed million pixel Color Fundus Photos(CFP) to complete multi-label multi classification and lesion location tasks at the same time. In order to solve this problem, Double Flow Multi Instance Neural Network(DF-MINN) is designed. Df-MINN is an end-to-end dual flow network. It uses Multi Instance Spatial Attention(MISA) module to extract local information and Global Priorities Network base on Involvement(GPNI) module to analyze the overall content. In addition, experiments on the open multi label fundus dataset OIA-ODIR showed that DF-MINN was higher average precision than the previous network in the prediction of all seven diseases. Ablation experiments further proved the importance of high-resolution images in the diagnosis of fundus diseases.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"EM-34 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了人工智能在眼底疾病预测中的新挑战:仅使用未经处理的百万像素彩色眼底照片(CFP)即可同时完成多标签多分类和病灶定位任务。为了解决这一问题,设计了双流多实例神经网络(DF-MINN)。Df-MINN是端到端双流网络。利用多实例空间注意(MISA)模块提取局部信息,利用基于介入的全局优先网络(GPNI)模块分析整体内容。此外,在开放的多标签眼底数据集OIA-ODIR上进行的实验表明,DF-MINN对所有7种疾病的预测平均精度都高于之前的网络。消融实验进一步证明了高分辨率图像在眼底疾病诊断中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Base on Megapixel Color Fundus Photos for Multi-label Disease Classification
This paper discusses a new challenge of artificial intelligence in predicting fundus diseases: using only unprocessed million pixel Color Fundus Photos(CFP) to complete multi-label multi classification and lesion location tasks at the same time. In order to solve this problem, Double Flow Multi Instance Neural Network(DF-MINN) is designed. Df-MINN is an end-to-end dual flow network. It uses Multi Instance Spatial Attention(MISA) module to extract local information and Global Priorities Network base on Involvement(GPNI) module to analyze the overall content. In addition, experiments on the open multi label fundus dataset OIA-ODIR showed that DF-MINN was higher average precision than the previous network in the prediction of all seven diseases. Ablation experiments further proved the importance of high-resolution images in the diagnosis of fundus diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1