S. Macgregor, I. Timoshkin, M. Given, R. Fouracre, J. Lehr, L. Warne
{"title":"影响多电极火花隙激光触发气体开关(LTGS)工作的因素","authors":"S. Macgregor, I. Timoshkin, M. Given, R. Fouracre, J. Lehr, L. Warne","doi":"10.1109/PPPS.2007.4651808","DOIUrl":null,"url":null,"abstract":"Multi-electrode spark switches can be used for switching applications at elevated voltages or for command triggering. Symmetrical field graded electrodes allow the electrical stress across individual gaps to be controlled, thus maximising the hold off voltage and reducing switch pre-fire. The paper considers some aspects of multielectrode switch design and their influence on switching behavior. Non-symmetrical, uni-directional electrode topologies can be employed with advantages over traditional symmetrical design. The choice of working gas and gas pressure can influence switching performance in terms of delay-time and jitter. Transient analysis of switch characteristics has been undertaken in order to understand multi-electrode switching.","PeriodicalId":275106,"journal":{"name":"2007 16th IEEE International Pulsed Power Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Factors affecting the operation of laser-triggered gas switch (LTGS) with multi-electrode spark gap\",\"authors\":\"S. Macgregor, I. Timoshkin, M. Given, R. Fouracre, J. Lehr, L. Warne\",\"doi\":\"10.1109/PPPS.2007.4651808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-electrode spark switches can be used for switching applications at elevated voltages or for command triggering. Symmetrical field graded electrodes allow the electrical stress across individual gaps to be controlled, thus maximising the hold off voltage and reducing switch pre-fire. The paper considers some aspects of multielectrode switch design and their influence on switching behavior. Non-symmetrical, uni-directional electrode topologies can be employed with advantages over traditional symmetrical design. The choice of working gas and gas pressure can influence switching performance in terms of delay-time and jitter. Transient analysis of switch characteristics has been undertaken in order to understand multi-electrode switching.\",\"PeriodicalId\":275106,\"journal\":{\"name\":\"2007 16th IEEE International Pulsed Power Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 16th IEEE International Pulsed Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPPS.2007.4651808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 16th IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS.2007.4651808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Factors affecting the operation of laser-triggered gas switch (LTGS) with multi-electrode spark gap
Multi-electrode spark switches can be used for switching applications at elevated voltages or for command triggering. Symmetrical field graded electrodes allow the electrical stress across individual gaps to be controlled, thus maximising the hold off voltage and reducing switch pre-fire. The paper considers some aspects of multielectrode switch design and their influence on switching behavior. Non-symmetrical, uni-directional electrode topologies can be employed with advantages over traditional symmetrical design. The choice of working gas and gas pressure can influence switching performance in terms of delay-time and jitter. Transient analysis of switch characteristics has been undertaken in order to understand multi-electrode switching.