成功实施科威特北部巨型砂岩油藏单井化学示踪剂SWCT测试

M. T. Al-Murayri, Dawood S. Kamal, R. Al-Abbas, G. Shahin, Greg Chilek, S. Shukla
{"title":"成功实施科威特北部巨型砂岩油藏单井化学示踪剂SWCT测试","authors":"M. T. Al-Murayri, Dawood S. Kamal, R. Al-Abbas, G. Shahin, Greg Chilek, S. Shukla","doi":"10.2118/198127-ms","DOIUrl":null,"url":null,"abstract":"\n A one-spot EOR pilot was successfully completed to demonstrate the efficacy of a lab-optimized ASP formulation to mobilize remaining oil from a giant sandstone reservoir in Kuwait. This one-spot EOR pilot, which also referred to as a Single Well Chemical Tracer (SWCT) test, was a significant milestone in de-risking ASP flooding for multi-well pilot implementation.\n The vertical zone of investigation for the Raudhatain Zubair (RAZU) SWCT was chosen to be a confined channel sand with relatively homogeneous and representative properties in a producer near the proposed pilot area. Two SWCT tests were performed and the difference in residual oil saturation from post water flood and post ASP injection tracer tests quantitatively determines the displacement efficiency of the ASP slug. The tracer chemicals for the tests included a hydrolyzing, partitioning tracer (ethyl acetate) and two alcohols (n-propyl alcohol and isopropyl alcohol) that serve as cover tracer and material balance tracer, respectively, to ensure robustness of test interpretation.\n The water flood SWCT test showed ideal behavior with well-defined profiles. Interpretation of this test was accomplished using a single layer model and showed that at the end of the water flood, the residual oil saturation to water was 0.24 ± 0.02% in the 23 -ft interval for the SWCT test. The ASP tracer test was complicated due to poor injectivity, well mechanical issues, and dilution from a zone which did not accept any SWCT test injection fluids but contributed substantially to production. Due to the dilution from another zone, the ASP tracer test profiles were more dispersed than the water flood tracer test but were adequately modeled using a two-layer model with irreversible flow. Analysis of the ASP SWCT test showed that the average oil saturation was reduced to 0.06 ± 0.05%, which represents a ~67% reduction in residual oil saturation.\n Despite poor injectivity leading to a reduced polymer drive and taper injection and dilution from another zone resulting in a non-idealized tracer response, careful interpretation of the SWCT test measurements resulted in a reliable estimate of the post-ASP oil saturation. The SWCT test results demonstrate the feasibility of applying ASP flooding to increase oil recovery from a giant high-temperature sandstone reservoir in North Kuwait.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"56 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Successful Implementation of a Single Well Chemical Tracer SWCT Test for a Giant Sandstone Reservoir in North Kuwait\",\"authors\":\"M. T. Al-Murayri, Dawood S. Kamal, R. Al-Abbas, G. Shahin, Greg Chilek, S. Shukla\",\"doi\":\"10.2118/198127-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A one-spot EOR pilot was successfully completed to demonstrate the efficacy of a lab-optimized ASP formulation to mobilize remaining oil from a giant sandstone reservoir in Kuwait. This one-spot EOR pilot, which also referred to as a Single Well Chemical Tracer (SWCT) test, was a significant milestone in de-risking ASP flooding for multi-well pilot implementation.\\n The vertical zone of investigation for the Raudhatain Zubair (RAZU) SWCT was chosen to be a confined channel sand with relatively homogeneous and representative properties in a producer near the proposed pilot area. Two SWCT tests were performed and the difference in residual oil saturation from post water flood and post ASP injection tracer tests quantitatively determines the displacement efficiency of the ASP slug. The tracer chemicals for the tests included a hydrolyzing, partitioning tracer (ethyl acetate) and two alcohols (n-propyl alcohol and isopropyl alcohol) that serve as cover tracer and material balance tracer, respectively, to ensure robustness of test interpretation.\\n The water flood SWCT test showed ideal behavior with well-defined profiles. Interpretation of this test was accomplished using a single layer model and showed that at the end of the water flood, the residual oil saturation to water was 0.24 ± 0.02% in the 23 -ft interval for the SWCT test. The ASP tracer test was complicated due to poor injectivity, well mechanical issues, and dilution from a zone which did not accept any SWCT test injection fluids but contributed substantially to production. Due to the dilution from another zone, the ASP tracer test profiles were more dispersed than the water flood tracer test but were adequately modeled using a two-layer model with irreversible flow. Analysis of the ASP SWCT test showed that the average oil saturation was reduced to 0.06 ± 0.05%, which represents a ~67% reduction in residual oil saturation.\\n Despite poor injectivity leading to a reduced polymer drive and taper injection and dilution from another zone resulting in a non-idealized tracer response, careful interpretation of the SWCT test measurements resulted in a reliable estimate of the post-ASP oil saturation. The SWCT test results demonstrate the feasibility of applying ASP flooding to increase oil recovery from a giant high-temperature sandstone reservoir in North Kuwait.\",\"PeriodicalId\":282370,\"journal\":{\"name\":\"Day 2 Mon, October 14, 2019\",\"volume\":\"56 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, October 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198127-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198127-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一项单点EOR试验成功完成,证明了实验室优化的ASP配方在科威特一个大型砂岩油藏中开采剩余油的有效性。这一单点EOR试验,也被称为单井化学示踪剂(SWCT)测试,是多井试验实施中降低三元复合驱风险的一个重要里程碑。Raudhatain Zubair (RAZU) SWCT的垂直研究区域被选择为封闭通道砂,在提议的试验区附近的生产中具有相对均匀和代表性的性质。进行了两次SWCT测试,水驱后和注入ASP后的示踪剂测试的残余油饱和度差异定量地确定了ASP段塞的驱替效率。用于测试的示踪化学物质包括水解,分配示踪剂(乙酸乙酯)和两种醇(正丙醇和异丙醇),它们分别作为覆盖示踪剂和物质平衡示踪剂,以确保测试解释的稳健性。水驱SWCT测试显示出理想的性能和良好的剖面。该测试使用单层模型进行解释,结果表明,在注水结束时,在SWCT测试的23英尺井段中,残余油对水的饱和度为0.24±0.02%。由于注入能力差、井力学问题以及不接受任何SWCT测试注入流体但对产量有很大贡献的区域的稀释,ASP示踪剂测试非常复杂。由于另一层的稀释作用,ASP示踪剂测试剖面比水驱示踪剂测试剖面更分散,但使用不可逆流动的两层模型进行了充分的建模。ASP SWCT测试分析表明,平均含油饱和度降至0.06±0.05%,剩余油饱和度降低~67%。尽管较差的注入能力导致聚合物驱减少,另一层的锥形注入和稀释导致示踪剂响应不理想,但仔细解释SWCT测试测量结果,可以可靠地估计asp后的油饱和度。SWCT测试结果表明,在科威特北部的一个大型高温砂岩油藏中,应用三元复合驱提高采收率是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Successful Implementation of a Single Well Chemical Tracer SWCT Test for a Giant Sandstone Reservoir in North Kuwait
A one-spot EOR pilot was successfully completed to demonstrate the efficacy of a lab-optimized ASP formulation to mobilize remaining oil from a giant sandstone reservoir in Kuwait. This one-spot EOR pilot, which also referred to as a Single Well Chemical Tracer (SWCT) test, was a significant milestone in de-risking ASP flooding for multi-well pilot implementation. The vertical zone of investigation for the Raudhatain Zubair (RAZU) SWCT was chosen to be a confined channel sand with relatively homogeneous and representative properties in a producer near the proposed pilot area. Two SWCT tests were performed and the difference in residual oil saturation from post water flood and post ASP injection tracer tests quantitatively determines the displacement efficiency of the ASP slug. The tracer chemicals for the tests included a hydrolyzing, partitioning tracer (ethyl acetate) and two alcohols (n-propyl alcohol and isopropyl alcohol) that serve as cover tracer and material balance tracer, respectively, to ensure robustness of test interpretation. The water flood SWCT test showed ideal behavior with well-defined profiles. Interpretation of this test was accomplished using a single layer model and showed that at the end of the water flood, the residual oil saturation to water was 0.24 ± 0.02% in the 23 -ft interval for the SWCT test. The ASP tracer test was complicated due to poor injectivity, well mechanical issues, and dilution from a zone which did not accept any SWCT test injection fluids but contributed substantially to production. Due to the dilution from another zone, the ASP tracer test profiles were more dispersed than the water flood tracer test but were adequately modeled using a two-layer model with irreversible flow. Analysis of the ASP SWCT test showed that the average oil saturation was reduced to 0.06 ± 0.05%, which represents a ~67% reduction in residual oil saturation. Despite poor injectivity leading to a reduced polymer drive and taper injection and dilution from another zone resulting in a non-idealized tracer response, careful interpretation of the SWCT test measurements resulted in a reliable estimate of the post-ASP oil saturation. The SWCT test results demonstrate the feasibility of applying ASP flooding to increase oil recovery from a giant high-temperature sandstone reservoir in North Kuwait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Anatomy of Bypassed Low Resistivity Low Contrast Hydrocarbon Reservoirs: The Arts of Finding Additional Barrels in a Highly Complex Stratigraphic Geological Setting The Synergy of Surfactant and Nanoparticles: Towards Enhancing Foam Stability Characterization of Barriers to Flow in Burgan Reservoirs Using Geological and Dynamic Pressure Data, Burgan Field, Kuwait. Do the Right Thing at Right Time KOC Way of Integrating Process Safety into Process Related Facility Projects Holistic Approach to Estimate Water Breakthrough; A Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1