气动鞋样系统的研制

M. Staymates, G. Gillen, J. Grandner, Stefan R Lukow
{"title":"气动鞋样系统的研制","authors":"M. Staymates, G. Gillen, J. Grandner, Stefan R Lukow","doi":"10.1109/THS.2011.6107884","DOIUrl":null,"url":null,"abstract":"In collaboration with the Transportation Security Laboratory, the National Institute of Standards and Technology has been developing a prototype shoe sampling system that relies on aerodynamic sampling for liberating, transporting, and collecting explosive contamination. Here, we focus on the measurement science of aerodynamic sampling with the goal of uncovering the underlying physics of the flow fields within these sampling systems. This paper will cover the results of a series of experiments that were used to help with the design of our prototype shoe sampling system. Laser light-sheet flow visualization revealed the bulk fluid motion inside and around the sampling system. Polymer microsphere particle standards were used to quantify the particle release efficiency of the shoe sampling system. Patches containing a known mass of explosives were also used to determine the effectiveness of particle release in the shoe sampler. Results from these experiments indicate that particle removal efficiency at a specific location is strongly influenced by its distance from an air jet and the type of explosive or material on the surface. The successful application of these flow visualization techniques and other metrology tools has helped us construct the sampling portion of a shoe screening prototype. The hope is that these tools will be useful to others who are developing next-generation aerodynamic sampling technologies.","PeriodicalId":228322,"journal":{"name":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","volume":"45 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The development of an aerodynamic shoe sampling system\",\"authors\":\"M. Staymates, G. Gillen, J. Grandner, Stefan R Lukow\",\"doi\":\"10.1109/THS.2011.6107884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In collaboration with the Transportation Security Laboratory, the National Institute of Standards and Technology has been developing a prototype shoe sampling system that relies on aerodynamic sampling for liberating, transporting, and collecting explosive contamination. Here, we focus on the measurement science of aerodynamic sampling with the goal of uncovering the underlying physics of the flow fields within these sampling systems. This paper will cover the results of a series of experiments that were used to help with the design of our prototype shoe sampling system. Laser light-sheet flow visualization revealed the bulk fluid motion inside and around the sampling system. Polymer microsphere particle standards were used to quantify the particle release efficiency of the shoe sampling system. Patches containing a known mass of explosives were also used to determine the effectiveness of particle release in the shoe sampler. Results from these experiments indicate that particle removal efficiency at a specific location is strongly influenced by its distance from an air jet and the type of explosive or material on the surface. The successful application of these flow visualization techniques and other metrology tools has helped us construct the sampling portion of a shoe screening prototype. The hope is that these tools will be useful to others who are developing next-generation aerodynamic sampling technologies.\",\"PeriodicalId\":228322,\"journal\":{\"name\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"volume\":\"45 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THS.2011.6107884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2011.6107884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在与运输安全实验室的合作下,美国国家标准与技术研究所一直在开发一种原型鞋采样系统,该系统依靠空气动力学采样来释放、运输和收集爆炸性污染。在这里,我们将重点放在气动采样的测量科学上,目的是揭示这些采样系统中流场的潜在物理特性。本文将介绍一系列实验的结果,这些实验用于帮助设计我们的原型鞋取样系统。激光光片流动可视化显示了取样系统内部和周围的大量流体运动。采用聚合物微球颗粒标准来量化鞋样系统的颗粒释放效率。还使用含有已知质量爆炸物的碎片来确定鞋子取样器中颗粒释放的有效性。实验结果表明,颗粒在特定位置的去除效率受其与气流的距离和表面爆炸物或物质的类型的强烈影响。这些流动可视化技术和其他计量工具的成功应用帮助我们构建了鞋子筛选原型的采样部分。希望这些工具将对开发下一代空气动力学采样技术的其他人有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The development of an aerodynamic shoe sampling system
In collaboration with the Transportation Security Laboratory, the National Institute of Standards and Technology has been developing a prototype shoe sampling system that relies on aerodynamic sampling for liberating, transporting, and collecting explosive contamination. Here, we focus on the measurement science of aerodynamic sampling with the goal of uncovering the underlying physics of the flow fields within these sampling systems. This paper will cover the results of a series of experiments that were used to help with the design of our prototype shoe sampling system. Laser light-sheet flow visualization revealed the bulk fluid motion inside and around the sampling system. Polymer microsphere particle standards were used to quantify the particle release efficiency of the shoe sampling system. Patches containing a known mass of explosives were also used to determine the effectiveness of particle release in the shoe sampler. Results from these experiments indicate that particle removal efficiency at a specific location is strongly influenced by its distance from an air jet and the type of explosive or material on the surface. The successful application of these flow visualization techniques and other metrology tools has helped us construct the sampling portion of a shoe screening prototype. The hope is that these tools will be useful to others who are developing next-generation aerodynamic sampling technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face recognition despite missing information Separating the baby from the bathwater: Toward a generic and practical framework for anonymization A calibration free hybrid RF and video surveillance system for reliable tracking and identification Low cost, pervasive detection of radiation threats Avoiding the closure of ports during a national emergency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1