利用深度学习从胸部x线图像预测新生儿慢性肺病的发展

Ryunosuke Maeda, Daisuke Fujita, Kosuke Tanaka, Jyunichi Ozawa, Mitsuhiro Haga, Naoyuki Miyahara, Fumihiko Nanba, Syoji Kobashi
{"title":"利用深度学习从胸部x线图像预测新生儿慢性肺病的发展","authors":"Ryunosuke Maeda, Daisuke Fujita, Kosuke Tanaka, Jyunichi Ozawa, Mitsuhiro Haga, Naoyuki Miyahara, Fumihiko Nanba, Syoji Kobashi","doi":"10.1109/ISMVL57333.2023.00020","DOIUrl":null,"url":null,"abstract":"Neonatal chronic lung disease (CLD) is the most common and serious lung disease in premature infants. No previous studies have used chest X-ray images. In this study, we propose to predict and classify patients with and without CLD from neonatal chest X-ray images using a convolutional neural network (CNN). We conducted a 5-segment cross-validation experiment using chest X-ray images of 115 subjects at 7 days of age. Accuracy and AUC values of 0.6 and 0.642 were obtained, respectively. Future work includes the development of an algorithm suitable for neonatal data and the estimation of other age groups.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Development of Chronic Lung Disease in Neonataes from Chest X-ray Images Using Deep Learning\",\"authors\":\"Ryunosuke Maeda, Daisuke Fujita, Kosuke Tanaka, Jyunichi Ozawa, Mitsuhiro Haga, Naoyuki Miyahara, Fumihiko Nanba, Syoji Kobashi\",\"doi\":\"10.1109/ISMVL57333.2023.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neonatal chronic lung disease (CLD) is the most common and serious lung disease in premature infants. No previous studies have used chest X-ray images. In this study, we propose to predict and classify patients with and without CLD from neonatal chest X-ray images using a convolutional neural network (CNN). We conducted a 5-segment cross-validation experiment using chest X-ray images of 115 subjects at 7 days of age. Accuracy and AUC values of 0.6 and 0.642 were obtained, respectively. Future work includes the development of an algorithm suitable for neonatal data and the estimation of other age groups.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新生儿慢性肺病(CLD)是早产儿中最常见、最严重的肺部疾病。此前没有研究使用胸部x光图像。在这项研究中,我们建议使用卷积神经网络(CNN)从新生儿胸部x线图像中预测和分类有无CLD的患者。我们使用115名7日龄受试者的胸部x线图像进行了5段交叉验证实验。准确度为0.6,AUC值为0.642。未来的工作包括开发适用于新生儿数据和其他年龄组估计的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Development of Chronic Lung Disease in Neonataes from Chest X-ray Images Using Deep Learning
Neonatal chronic lung disease (CLD) is the most common and serious lung disease in premature infants. No previous studies have used chest X-ray images. In this study, we propose to predict and classify patients with and without CLD from neonatal chest X-ray images using a convolutional neural network (CNN). We conducted a 5-segment cross-validation experiment using chest X-ray images of 115 subjects at 7 days of age. Accuracy and AUC values of 0.6 and 0.642 were obtained, respectively. Future work includes the development of an algorithm suitable for neonatal data and the estimation of other age groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Logical Method to Predict Outcomes After Coronary Artery Bypass Grafting Write-Energy Relaxation of MTJ-Based Quantized Neural-Network Hardware Linking Łukasiewicz Logic and Boolean Maximum Satisfiability Logic Synthesis from Polynomials with Coefficients in the Field of Rationals Higher-Order Boolean Masking Does Not Prevent Side-Channel Attacks on LWE/LWR-based PKE/KEMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1