基于局部方向模式方差(LDPv)的人脸描述子用于人脸表情识别

M. H. Kabir, T. Jabid, O. Chae
{"title":"基于局部方向模式方差(LDPv)的人脸描述子用于人脸表情识别","authors":"M. H. Kabir, T. Jabid, O. Chae","doi":"10.1109/AVSS.2010.9","DOIUrl":null,"url":null,"abstract":"Automatic facial expression recognition is a challengingproblem in computer vision, and has gained significantimportance in applications of human-computer interaction.This paper presents a new appearance-based feature descriptor,the Local Directional Pattern Variance (LDPv), torepresent facial components for human expression recognition.In contrast with LDP, the proposed LDPv introducesthe local variance of directional responses to encodethe contrast information within the descriptor. Here,the LDPv represenation characterizes both spatial structureand contrast information of each micro-patterns. Templatematching and Support Vector Machine (SVM) classifierare used to classify the LDPv feature vector of differentprototypic expression images. Experimental results usingthe Cohn-Kanade database show that the LDPv descriptoryields an improved recognition rate, as compared to existingappearance-based feature descriptors, such as the Gaborwaveletand Local Binary Pattern (LBP).","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"A Local Directional Pattern Variance (LDPv) Based Face Descriptor for Human Facial Expression Recognition\",\"authors\":\"M. H. Kabir, T. Jabid, O. Chae\",\"doi\":\"10.1109/AVSS.2010.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic facial expression recognition is a challengingproblem in computer vision, and has gained significantimportance in applications of human-computer interaction.This paper presents a new appearance-based feature descriptor,the Local Directional Pattern Variance (LDPv), torepresent facial components for human expression recognition.In contrast with LDP, the proposed LDPv introducesthe local variance of directional responses to encodethe contrast information within the descriptor. Here,the LDPv represenation characterizes both spatial structureand contrast information of each micro-patterns. Templatematching and Support Vector Machine (SVM) classifierare used to classify the LDPv feature vector of differentprototypic expression images. Experimental results usingthe Cohn-Kanade database show that the LDPv descriptoryields an improved recognition rate, as compared to existingappearance-based feature descriptors, such as the Gaborwaveletand Local Binary Pattern (LBP).\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

面部表情自动识别是计算机视觉中的一个具有挑战性的问题,在人机交互应用中具有重要的意义。本文提出了一种新的基于外观的特征描述符——局部方向模式方差(LDPv)来表示人脸成分,用于人类表情识别。与LDP相比,本文提出的LDPv引入了方向响应的局部方差来对描述符中的对比度信息进行编码。在这里,LDPv表示表征了每个微格局的空间结构和对比信息。采用模板匹配和支持向量机(SVM)分类器对不同原型表达图像的LDPv特征向量进行分类。使用Cohn-Kanade数据库的实验结果表明,与现有的基于外观的特征描述符(如gaborwavelet和Local Binary Pattern (LBP))相比,LDPv描述符产生了更高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Local Directional Pattern Variance (LDPv) Based Face Descriptor for Human Facial Expression Recognition
Automatic facial expression recognition is a challengingproblem in computer vision, and has gained significantimportance in applications of human-computer interaction.This paper presents a new appearance-based feature descriptor,the Local Directional Pattern Variance (LDPv), torepresent facial components for human expression recognition.In contrast with LDP, the proposed LDPv introducesthe local variance of directional responses to encodethe contrast information within the descriptor. Here,the LDPv represenation characterizes both spatial structureand contrast information of each micro-patterns. Templatematching and Support Vector Machine (SVM) classifierare used to classify the LDPv feature vector of differentprototypic expression images. Experimental results usingthe Cohn-Kanade database show that the LDPv descriptoryields an improved recognition rate, as compared to existingappearance-based feature descriptors, such as the Gaborwaveletand Local Binary Pattern (LBP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1