移动交互式Web应用的云导向QoS和能量管理

Wooseok Lee, Dam Sunwoo, A. Gerstlauer, L. John
{"title":"移动交互式Web应用的云导向QoS和能量管理","authors":"Wooseok Lee, Dam Sunwoo, A. Gerstlauer, L. John","doi":"10.1109/MOBILESoft.2017.4","DOIUrl":null,"url":null,"abstract":"In mobile interactive web applications, energy-efficient quality-of-service (QoS) scheduling involves setting a deadline for the best user experience and providing just enough performance to minimize energy. Such performance-slacking approaches require precise performance adjustment using execution time prediction. However, prior prediction approaches suffer from prohibitive training due to extensive input data and manual source code instrumentation. In this paper, we propose a cloud-guided QoS and energy management approach that eliminates the prediction overhead by offloading it to cloud resources. Our approach pre-computes per-input execution time models by profiling web applications on dedicated mobile devices in the cloud. When mobile web applications request data to servers, both the data and its execution time models are delivered to users' mobile devices. Based on the delivered models, a performance control agent on the mobile device selects an operating point to meet the response time requirement. Experimental results show that, by offloading modeling and prediction overheads, our performance-slacking approach can provide average energy savings of 22% and 39% (and up to 89%) for two different timing budgets compared to an industry-quality approach.","PeriodicalId":281934,"journal":{"name":"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cloud-Guided QoS and Energy Management for Mobile Interactive Web Applications\",\"authors\":\"Wooseok Lee, Dam Sunwoo, A. Gerstlauer, L. John\",\"doi\":\"10.1109/MOBILESoft.2017.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mobile interactive web applications, energy-efficient quality-of-service (QoS) scheduling involves setting a deadline for the best user experience and providing just enough performance to minimize energy. Such performance-slacking approaches require precise performance adjustment using execution time prediction. However, prior prediction approaches suffer from prohibitive training due to extensive input data and manual source code instrumentation. In this paper, we propose a cloud-guided QoS and energy management approach that eliminates the prediction overhead by offloading it to cloud resources. Our approach pre-computes per-input execution time models by profiling web applications on dedicated mobile devices in the cloud. When mobile web applications request data to servers, both the data and its execution time models are delivered to users' mobile devices. Based on the delivered models, a performance control agent on the mobile device selects an operating point to meet the response time requirement. Experimental results show that, by offloading modeling and prediction overheads, our performance-slacking approach can provide average energy savings of 22% and 39% (and up to 89%) for two different timing budgets compared to an industry-quality approach.\",\"PeriodicalId\":281934,\"journal\":{\"name\":\"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOBILESoft.2017.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBILESoft.2017.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在移动交互式web应用程序中,节能的服务质量(QoS)调度包括为最佳用户体验设置最后期限,并提供足够的性能以最小化能耗。这种降低性能的方法需要使用执行时间预测进行精确的性能调整。然而,先前的预测方法由于大量的输入数据和手动源代码检测而受到训练的限制。在本文中,我们提出了一种以云为导向的QoS和能量管理方法,通过将其卸载到云资源来消除预测开销。我们的方法是通过分析云中的专用移动设备上的web应用程序来预先计算每次输入的执行时间模型。当移动web应用程序向服务器请求数据时,数据及其执行时间模型都被传送到用户的移动设备上。基于交付的模型,移动设备上的性能控制代理选择一个操作点来满足响应时间要求。实验结果表明,通过减少建模和预测开销,与行业质量方法相比,我们的性能松弛方法可以在两种不同的时间预算下平均节省22%和39%(最高可达89%)的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-Guided QoS and Energy Management for Mobile Interactive Web Applications
In mobile interactive web applications, energy-efficient quality-of-service (QoS) scheduling involves setting a deadline for the best user experience and providing just enough performance to minimize energy. Such performance-slacking approaches require precise performance adjustment using execution time prediction. However, prior prediction approaches suffer from prohibitive training due to extensive input data and manual source code instrumentation. In this paper, we propose a cloud-guided QoS and energy management approach that eliminates the prediction overhead by offloading it to cloud resources. Our approach pre-computes per-input execution time models by profiling web applications on dedicated mobile devices in the cloud. When mobile web applications request data to servers, both the data and its execution time models are delivered to users' mobile devices. Based on the delivered models, a performance control agent on the mobile device selects an operating point to meet the response time requirement. Experimental results show that, by offloading modeling and prediction overheads, our performance-slacking approach can provide average energy savings of 22% and 39% (and up to 89%) for two different timing budgets compared to an industry-quality approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Same App, Different App Stores: A Comparative Study Predicting Android Application Security and Privacy Risk with Static Code Metrics A Set of Metrics for the Effort Estimation of Mobile Apps Assessing the Impact of Service Workers on the Energy Efficiency of Progressive Web Apps Towards Mobile Twin Peaks for App Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1