Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu
{"title":"判别分段模型的端到端训练方法","authors":"Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu","doi":"10.1109/SLT.2016.7846309","DOIUrl":null,"url":null,"abstract":"Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"End-to-end training approaches for discriminative segmental models\",\"authors\":\"Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu\",\"doi\":\"10.1109/SLT.2016.7846309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-end training approaches for discriminative segmental models
Recent work on discriminative segmental models has shown that they can achieve competitive speech recognition performance, using features based on deep neural frame classifiers. However, segmental models can be more challenging to train than standard frame-based approaches. While some segmental models have been successfully trained end to end, there is a lack of understanding of their training under different settings and with different losses.