谷歌趋势预测从俄罗斯到德国的移民

Георгий Тимурович Броницкий, Елена Сергеевна Вакуленко
{"title":"谷歌趋势预测从俄罗斯到德国的移民","authors":"Георгий Тимурович Броницкий, Елена Сергеевна Вакуленко","doi":"10.17323/demreview.v9i3.16471","DOIUrl":null,"url":null,"abstract":"Международная миграционная статистика публикуется с большой задержкой, которая может достигать нескольких лет. Эта проблема не позволяет исследователям осуществлять своевременный анализ миграционных потоков. В статье рассматривается метод прогнозирования международной миграции на основе поисковых запросов в сети Интернет на примере потоков из России в Германию в период 2011-2020 гг. Для анализа применяли показатели Росстата, статистического офиса Германии и ОЭСР. Предложенный в работе подход позволяет получать оценки миграционной динамики фактически без задержки во времени. Более того, в некоторых случаях возможно предсказывать миграционные события до фактического переезда, что может быть также использовано для прогнозирования других экономических индикаторов. Для построения необходимых оценок в работе были разработаны и применены методы, позволяющие увеличить частотность исходных наблюдений, а также получить краткосрочные ежемесячные прогнозы. Для получения множества поисковых запросов по миграционной тематике использовали NLP- подходы. Были оценены параметры линейной регрессии, построенной на основе данных о частоте использования поисковых запросов Google Trends, связанных с миграционными намерениями. В отличие от модели сезонных авторегрессионных интегрированных скользящих средних (SARIMA), предложенный подход позволяет учитывать структурные сдвиги и шоки в текущих процессах, отраженные в поисковых запросах в Интернете, и дает возможность получать краткосрочные прогнозы миграции в режиме реального времени (наукастинг). Описанные методы можно использовать как при исследовании других пар стран, так и для оценки других статистических показателей.","PeriodicalId":145499,"journal":{"name":"Демографическое обозрение","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Прогнозирование миграции из России в Германию с использованием Google-трендов\",\"authors\":\"Георгий Тимурович Броницкий, Елена Сергеевна Вакуленко\",\"doi\":\"10.17323/demreview.v9i3.16471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Международная миграционная статистика публикуется с большой задержкой, которая может достигать нескольких лет. Эта проблема не позволяет исследователям осуществлять своевременный анализ миграционных потоков. В статье рассматривается метод прогнозирования международной миграции на основе поисковых запросов в сети Интернет на примере потоков из России в Германию в период 2011-2020 гг. Для анализа применяли показатели Росстата, статистического офиса Германии и ОЭСР. Предложенный в работе подход позволяет получать оценки миграционной динамики фактически без задержки во времени. Более того, в некоторых случаях возможно предсказывать миграционные события до фактического переезда, что может быть также использовано для прогнозирования других экономических индикаторов. Для построения необходимых оценок в работе были разработаны и применены методы, позволяющие увеличить частотность исходных наблюдений, а также получить краткосрочные ежемесячные прогнозы. Для получения множества поисковых запросов по миграционной тематике использовали NLP- подходы. Были оценены параметры линейной регрессии, построенной на основе данных о частоте использования поисковых запросов Google Trends, связанных с миграционными намерениями. В отличие от модели сезонных авторегрессионных интегрированных скользящих средних (SARIMA), предложенный подход позволяет учитывать структурные сдвиги и шоки в текущих процессах, отраженные в поисковых запросах в Интернете, и дает возможность получать краткосрочные прогнозы миграции в режиме реального времени (наукастинг). Описанные методы можно использовать как при исследовании других пар стран, так и для оценки других статистических показателей.\",\"PeriodicalId\":145499,\"journal\":{\"name\":\"Демографическое обозрение\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Демографическое обозрение\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17323/demreview.v9i3.16471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Демографическое обозрение","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/demreview.v9i3.16471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国际移民统计数据发布的时间很长,可能长达数年。这个问题不允许研究人员及时分析移民流动。这篇文章描述了一种基于互联网搜索需求的预测国际移民的方法,基于2011-2020年从俄罗斯到德国的流量。工作中提出的方法实际上允许在不延迟的情况下对移民动态进行评估。此外,在某些情况下,可以在实际迁移之前预测移民事件,也可以用来预测其他经济指标。为了建立必要的绩效评估,开发和应用了提高基准观测频率的方法,并获得短期每月预测。NLP方法被用于对移民主题的多个搜索。根据谷歌趋势搜索引擎搜索频率的数据,对线性回归参数进行了评估。与季节性自退行性积分平均模型(SARIMA)不同,拟议的方法可以考虑到网络搜索中反映的当前进程中的结构性变化和冲击,并提供短期实时移民预测(nocasting)。这些方法可以用于研究其他国家的其他夫妇,也可以用来评估其他统计数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Прогнозирование миграции из России в Германию с использованием Google-трендов
Международная миграционная статистика публикуется с большой задержкой, которая может достигать нескольких лет. Эта проблема не позволяет исследователям осуществлять своевременный анализ миграционных потоков. В статье рассматривается метод прогнозирования международной миграции на основе поисковых запросов в сети Интернет на примере потоков из России в Германию в период 2011-2020 гг. Для анализа применяли показатели Росстата, статистического офиса Германии и ОЭСР. Предложенный в работе подход позволяет получать оценки миграционной динамики фактически без задержки во времени. Более того, в некоторых случаях возможно предсказывать миграционные события до фактического переезда, что может быть также использовано для прогнозирования других экономических индикаторов. Для построения необходимых оценок в работе были разработаны и применены методы, позволяющие увеличить частотность исходных наблюдений, а также получить краткосрочные ежемесячные прогнозы. Для получения множества поисковых запросов по миграционной тематике использовали NLP- подходы. Были оценены параметры линейной регрессии, построенной на основе данных о частоте использования поисковых запросов Google Trends, связанных с миграционными намерениями. В отличие от модели сезонных авторегрессионных интегрированных скользящих средних (SARIMA), предложенный подход позволяет учитывать структурные сдвиги и шоки в текущих процессах, отраженные в поисковых запросах в Интернете, и дает возможность получать краткосрочные прогнозы миграции в режиме реального времени (наукастинг). Описанные методы можно использовать как при исследовании других пар стран, так и для оценки других статистических показателей.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Социально-экономические риски стигматизации ВИЧ-инфицированных на примере студенческой молодёжи Дети мигрантов в России: потребность в интеграционной образовательной поддержке Смертность и рождаемость в XIX веке на территории Европейской части Российской Империи в границах Российской Федерации 1926 года Армяне юга России – современная геодемографическая динамика региональных общин (2010-е – начало 2020-х гг.) Распространенность потребления табачной и никотинсодержащей продукции в Российской Федерации: анализ тенденций в 2019-2022 гг.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1