从基于内容的注释图像生成文本描述

Yan Zhu, Hui Xiang, Wenjuan Feng
{"title":"从基于内容的注释图像生成文本描述","authors":"Yan Zhu, Hui Xiang, Wenjuan Feng","doi":"10.1109/ICSAI.2012.6223132","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical generative model to generate sentences from an annotated picture. The images are segmented into regions (using Graph-based algorithms) and then features are computed over each of these regions. Given a training set of images with annotations, we parse the image to get position information. We use SVM to get the probabilities of combinations between labels and prepositions, obtain the data to text set. We use a standard semantic representation to express the image message. Finally generate sentence from the xml report. In view of landscape pictures, this paper implemented experiments on the dataset we collected and annotated, obtained ideal results.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating text description from content-based annotated image\",\"authors\":\"Yan Zhu, Hui Xiang, Wenjuan Feng\",\"doi\":\"10.1109/ICSAI.2012.6223132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a statistical generative model to generate sentences from an annotated picture. The images are segmented into regions (using Graph-based algorithms) and then features are computed over each of these regions. Given a training set of images with annotations, we parse the image to get position information. We use SVM to get the probabilities of combinations between labels and prepositions, obtain the data to text set. We use a standard semantic representation to express the image message. Finally generate sentence from the xml report. In view of landscape pictures, this paper implemented experiments on the dataset we collected and annotated, obtained ideal results.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种统计生成模型,用于从标注图片中生成句子。图像被分割成区域(使用基于图的算法),然后在每个区域上计算特征。给定一个带有注释的图像训练集,我们解析图像以获得位置信息。我们利用支持向量机得到标签和介词组合的概率,得到数据到文本集。我们使用标准的语义表示来表达图像信息。最后从xml报告中生成语句。针对风景图片,本文在采集并标注的数据集上进行了实验,取得了理想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating text description from content-based annotated image
This paper proposes a statistical generative model to generate sentences from an annotated picture. The images are segmented into regions (using Graph-based algorithms) and then features are computed over each of these regions. Given a training set of images with annotations, we parse the image to get position information. We use SVM to get the probabilities of combinations between labels and prepositions, obtain the data to text set. We use a standard semantic representation to express the image message. Finally generate sentence from the xml report. In view of landscape pictures, this paper implemented experiments on the dataset we collected and annotated, obtained ideal results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1