{"title":"基于注视的虚拟任务预测器","authors":"Çagla Çig, T. M. Sezgin","doi":"10.1145/2666642.2666647","DOIUrl":null,"url":null,"abstract":"Pen-based systems promise an intuitive and natural interaction paradigm for tablet PCs and stylus-enabled phones. However, typical pen-based interfaces require users to switch modes frequently in order to complete ordinary tasks. Mode switching is usually achieved through hard or soft modifier keys, buttons, and soft-menus. Frequent invocation of these auxiliary mode switching elements goes against the goal of intuitive, fluid, and natural interaction. In this paper, we present a gaze-based virtual task prediction system that has the potential to alleviate dependence on explicit mode switching in pen-based systems. In particular, we show that a range of virtual manipulation commands, that would otherwise require auxiliary mode switching elements, can be issued with an 80% success rate with the aid of users' natural eye gaze behavior during pen-only interaction.","PeriodicalId":230150,"journal":{"name":"GazeIn '14","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gaze-Based Virtual Task Predictor\",\"authors\":\"Çagla Çig, T. M. Sezgin\",\"doi\":\"10.1145/2666642.2666647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pen-based systems promise an intuitive and natural interaction paradigm for tablet PCs and stylus-enabled phones. However, typical pen-based interfaces require users to switch modes frequently in order to complete ordinary tasks. Mode switching is usually achieved through hard or soft modifier keys, buttons, and soft-menus. Frequent invocation of these auxiliary mode switching elements goes against the goal of intuitive, fluid, and natural interaction. In this paper, we present a gaze-based virtual task prediction system that has the potential to alleviate dependence on explicit mode switching in pen-based systems. In particular, we show that a range of virtual manipulation commands, that would otherwise require auxiliary mode switching elements, can be issued with an 80% success rate with the aid of users' natural eye gaze behavior during pen-only interaction.\",\"PeriodicalId\":230150,\"journal\":{\"name\":\"GazeIn '14\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GazeIn '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666642.2666647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GazeIn '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666642.2666647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pen-based systems promise an intuitive and natural interaction paradigm for tablet PCs and stylus-enabled phones. However, typical pen-based interfaces require users to switch modes frequently in order to complete ordinary tasks. Mode switching is usually achieved through hard or soft modifier keys, buttons, and soft-menus. Frequent invocation of these auxiliary mode switching elements goes against the goal of intuitive, fluid, and natural interaction. In this paper, we present a gaze-based virtual task prediction system that has the potential to alleviate dependence on explicit mode switching in pen-based systems. In particular, we show that a range of virtual manipulation commands, that would otherwise require auxiliary mode switching elements, can be issued with an 80% success rate with the aid of users' natural eye gaze behavior during pen-only interaction.