面向大输出主动噪声控制的可重构硬件并行结构

Diego Mendez, David Arevalo, Diego Patino, E. Gerlein, Ricardo Quintana
{"title":"面向大输出主动噪声控制的可重构硬件并行结构","authors":"Diego Mendez, David Arevalo, Diego Patino, E. Gerlein, Ricardo Quintana","doi":"10.1142/s0129626419500142","DOIUrl":null,"url":null,"abstract":"Filtered-x Least Mean Squares (FxLMS) is an algorithm commonly used for Active Noise Control (ANC) systems in order to cancel undesired acoustic waves from a sound source. There is a small number of hardware designs reported in the literature, that in turn only use one reference signal, one error signal and one output control signal. In this paper, it is proposed a 3-dimensional hardware-based version of the widely used FxLMS algorithm, using one reference microphone, 18 error microphones, one output and a FIR filter of 400[Formula: see text] order. The FxLMS algorithm was implemented in a Xilinx Artix 7 FPGA running at 25 MHz, which allowed to update the filter coefficients in 32.44[Formula: see text] s. The main idea behind this work is to propose a pipelined parallelized architecture to achieve processing times faster than real time for the filter coefficients update. The main contribution of this work is not the ANC technique itself, but rather the proposed hardware implementation that utilizes integer arithmetic, which provided an acceptable error when benchmarked with a software implementation. This parallel system allows a scalable implementation as an advantage of using FPGA without compromising the computational cost and, consequently, the latency.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Architecture of Reconfigurable Hardware for Massive Output Active Noise Control\",\"authors\":\"Diego Mendez, David Arevalo, Diego Patino, E. Gerlein, Ricardo Quintana\",\"doi\":\"10.1142/s0129626419500142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filtered-x Least Mean Squares (FxLMS) is an algorithm commonly used for Active Noise Control (ANC) systems in order to cancel undesired acoustic waves from a sound source. There is a small number of hardware designs reported in the literature, that in turn only use one reference signal, one error signal and one output control signal. In this paper, it is proposed a 3-dimensional hardware-based version of the widely used FxLMS algorithm, using one reference microphone, 18 error microphones, one output and a FIR filter of 400[Formula: see text] order. The FxLMS algorithm was implemented in a Xilinx Artix 7 FPGA running at 25 MHz, which allowed to update the filter coefficients in 32.44[Formula: see text] s. The main idea behind this work is to propose a pipelined parallelized architecture to achieve processing times faster than real time for the filter coefficients update. The main contribution of this work is not the ANC technique itself, but rather the proposed hardware implementation that utilizes integer arithmetic, which provided an acceptable error when benchmarked with a software implementation. This parallel system allows a scalable implementation as an advantage of using FPGA without compromising the computational cost and, consequently, the latency.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626419500142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626419500142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

滤波最小均方(FxLMS)是一种常用的算法,用于主动噪声控制(ANC)系统,以消除来自声源的不需要的声波。文献中有少量的硬件设计,依次只使用一个参考信号、一个误差信号和一个输出控制信号。本文提出了一种被广泛应用的FxLMS算法的三维硬件版本,使用1个参考麦克风、18个误差麦克风、1个输出和400阶FIR滤波器。FxLMS算法在Xilinx Artix 7 FPGA上实现,运行频率为25 MHz,允许在32.44中更新滤波器系数[公式:见文本]s。这项工作背后的主要思想是提出一种流水线并行化架构,以实现滤波器系数更新的处理时间比实时更快。这项工作的主要贡献不是ANC技术本身,而是利用整数算法的拟议硬件实现,当与软件实现进行基准测试时,它提供了一个可接受的错误。这种并行系统允许可扩展的实现,作为使用FPGA的优势,而不会影响计算成本,因此,延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Architecture of Reconfigurable Hardware for Massive Output Active Noise Control
Filtered-x Least Mean Squares (FxLMS) is an algorithm commonly used for Active Noise Control (ANC) systems in order to cancel undesired acoustic waves from a sound source. There is a small number of hardware designs reported in the literature, that in turn only use one reference signal, one error signal and one output control signal. In this paper, it is proposed a 3-dimensional hardware-based version of the widely used FxLMS algorithm, using one reference microphone, 18 error microphones, one output and a FIR filter of 400[Formula: see text] order. The FxLMS algorithm was implemented in a Xilinx Artix 7 FPGA running at 25 MHz, which allowed to update the filter coefficients in 32.44[Formula: see text] s. The main idea behind this work is to propose a pipelined parallelized architecture to achieve processing times faster than real time for the filter coefficients update. The main contribution of this work is not the ANC technique itself, but rather the proposed hardware implementation that utilizes integer arithmetic, which provided an acceptable error when benchmarked with a software implementation. This parallel system allows a scalable implementation as an advantage of using FPGA without compromising the computational cost and, consequently, the latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1