双溪isap住宅洪水人工神经网络预测

K. C. Keong, M. Mustafa, A. Mohammad, M. Sulaiman, N. Abdullah
{"title":"双溪isap住宅洪水人工神经网络预测","authors":"K. C. Keong, M. Mustafa, A. Mohammad, M. Sulaiman, N. Abdullah","doi":"10.1109/I2CACIS.2016.7885321","DOIUrl":null,"url":null,"abstract":"A flood is an extremely dangerous disaster that can wipe away an entire city, coastline, and rural area. The flood can cause wide destrotion to property and life that has the supreme corrosive force and can be highly damaging. In order to decrease the damages caused by the flood, an Artificial Neural Network (ANN) model has been established to predict flood in Sungai Isap, Kuantan, Pahang, Malaysia. This model is able to initiate the same brain thinking process and avoid the influence of the predict judgment. In this paper, presentation and comparison that using Bayesian Regularization (BR) back-propagation, Levenberg-Marquardt (LM) back-propagation and Gradient Descent (GD) back-propagation algorithms will be organized and carry out the result flood prediction. The predicted result of the Bayesian Regularization indicates a satisfactory performance. The conclusions also indicate that Bayesian Regularization is more versatile than Levenberg-Marquart and Gradient Descent with that can be backup or a practical tool for flood prediction. Temperature, precipitation, dew point, humidity, sea level pressure, visibility, wind, and river level data collected from January 2013 until May 2015 in the city of Sungai Isap, Kuantan is used for training, validation, and testing of the network model. The comparison is shown on the basis of mean square error (MSE) and regression (R). The prediction by training function Bayesian Regularization back-propagation found to be more suitable to predict flood model.","PeriodicalId":399080,"journal":{"name":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Artificial neural network flood prediction for sungai isap residence\",\"authors\":\"K. C. Keong, M. Mustafa, A. Mohammad, M. Sulaiman, N. Abdullah\",\"doi\":\"10.1109/I2CACIS.2016.7885321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flood is an extremely dangerous disaster that can wipe away an entire city, coastline, and rural area. The flood can cause wide destrotion to property and life that has the supreme corrosive force and can be highly damaging. In order to decrease the damages caused by the flood, an Artificial Neural Network (ANN) model has been established to predict flood in Sungai Isap, Kuantan, Pahang, Malaysia. This model is able to initiate the same brain thinking process and avoid the influence of the predict judgment. In this paper, presentation and comparison that using Bayesian Regularization (BR) back-propagation, Levenberg-Marquardt (LM) back-propagation and Gradient Descent (GD) back-propagation algorithms will be organized and carry out the result flood prediction. The predicted result of the Bayesian Regularization indicates a satisfactory performance. The conclusions also indicate that Bayesian Regularization is more versatile than Levenberg-Marquart and Gradient Descent with that can be backup or a practical tool for flood prediction. Temperature, precipitation, dew point, humidity, sea level pressure, visibility, wind, and river level data collected from January 2013 until May 2015 in the city of Sungai Isap, Kuantan is used for training, validation, and testing of the network model. The comparison is shown on the basis of mean square error (MSE) and regression (R). The prediction by training function Bayesian Regularization back-propagation found to be more suitable to predict flood model.\",\"PeriodicalId\":399080,\"journal\":{\"name\":\"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS.2016.7885321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS.2016.7885321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

洪水是一种极其危险的灾难,可以摧毁整个城市、海岸线和农村地区。洪水可以对财产和生命造成广泛的破坏,具有最高的腐蚀性和高度破坏性。为了减少洪水造成的损失,建立了人工神经网络(ANN)模型,对马来西亚关丹、彭亨州双溪岛的洪水进行了预测。该模型能够启动相同的大脑思维过程,避免预测判断的影响。本文介绍并比较了利用贝叶斯正则化(BR)反向传播、Levenberg-Marquardt (LM)反向传播和梯度下降(GD)反向传播算法进行结果洪水预测。贝叶斯正则化的预测结果显示了令人满意的性能。结论还表明,贝叶斯正则化比Levenberg-Marquart和梯度下降法更通用,可以作为洪水预测的备用或实用工具。2013年1月至2015年5月在关丹Sungai Isap市收集的温度、降水、露点、湿度、海平面压力、能见度、风和水位数据用于网络模型的训练、验证和测试。在均方误差(MSE)和回归(R)的基础上进行了比较,发现训练函数贝叶斯正则化反向传播预测更适合洪水模型的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network flood prediction for sungai isap residence
A flood is an extremely dangerous disaster that can wipe away an entire city, coastline, and rural area. The flood can cause wide destrotion to property and life that has the supreme corrosive force and can be highly damaging. In order to decrease the damages caused by the flood, an Artificial Neural Network (ANN) model has been established to predict flood in Sungai Isap, Kuantan, Pahang, Malaysia. This model is able to initiate the same brain thinking process and avoid the influence of the predict judgment. In this paper, presentation and comparison that using Bayesian Regularization (BR) back-propagation, Levenberg-Marquardt (LM) back-propagation and Gradient Descent (GD) back-propagation algorithms will be organized and carry out the result flood prediction. The predicted result of the Bayesian Regularization indicates a satisfactory performance. The conclusions also indicate that Bayesian Regularization is more versatile than Levenberg-Marquart and Gradient Descent with that can be backup or a practical tool for flood prediction. Temperature, precipitation, dew point, humidity, sea level pressure, visibility, wind, and river level data collected from January 2013 until May 2015 in the city of Sungai Isap, Kuantan is used for training, validation, and testing of the network model. The comparison is shown on the basis of mean square error (MSE) and regression (R). The prediction by training function Bayesian Regularization back-propagation found to be more suitable to predict flood model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic controller design for intelligent drilling system Implementation of TRL (Thru-Reflect-Line) calibration kit for power amplifier measurement Study on 3D scene reconstruction in robot navigation using stereo vision A low cost nephelometric turbidity sensor for continual domestic water quality monitoring system Power energy management strategy of micro-grid system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1