基于卡尔曼滤波的循环小脑模型神经网络的锂离子电池充电状态估计

Zhifan Xu, Huasen Li, Wenyuan Li, Kai Yu
{"title":"基于卡尔曼滤波的循环小脑模型神经网络的锂离子电池充电状态估计","authors":"Zhifan Xu, Huasen Li, Wenyuan Li, Kai Yu","doi":"10.1109/AEEES56888.2023.10114306","DOIUrl":null,"url":null,"abstract":"The state of charge (SOC) is a crucial parameter for reflecting the battery's endurance. This study proposes the novel method of lithium-ion battery SOC estimation to ensure the working status of the energy storage system (ESS). Recurrent cerebellar model neural network (RCMNN) and Kalman filter (KF) are both applied for the SOC estimation that recurrent units can capture the dynamic features. The inputs of RCMNN and KF include voltage, current, and temperature for simulating the general situation of ESS. The battery data are collected in the Fujian Special Equipment Inspection and Research Institute. The results show that the accuracy and robustness of the proposed method under different conditions.","PeriodicalId":272114,"journal":{"name":"2023 5th Asia Energy and Electrical Engineering Symposium (AEEES)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of Charge Estimation for Lithium-ion Battery Using Recurrent Cerebellar Model Neural Network with Kalman Filter\",\"authors\":\"Zhifan Xu, Huasen Li, Wenyuan Li, Kai Yu\",\"doi\":\"10.1109/AEEES56888.2023.10114306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state of charge (SOC) is a crucial parameter for reflecting the battery's endurance. This study proposes the novel method of lithium-ion battery SOC estimation to ensure the working status of the energy storage system (ESS). Recurrent cerebellar model neural network (RCMNN) and Kalman filter (KF) are both applied for the SOC estimation that recurrent units can capture the dynamic features. The inputs of RCMNN and KF include voltage, current, and temperature for simulating the general situation of ESS. The battery data are collected in the Fujian Special Equipment Inspection and Research Institute. The results show that the accuracy and robustness of the proposed method under different conditions.\",\"PeriodicalId\":272114,\"journal\":{\"name\":\"2023 5th Asia Energy and Electrical Engineering Symposium (AEEES)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th Asia Energy and Electrical Engineering Symposium (AEEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEEES56888.2023.10114306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th Asia Energy and Electrical Engineering Symposium (AEEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEEES56888.2023.10114306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

充电状态(SOC)是反映电池续航能力的重要参数。为了保证储能系统的工作状态,提出了一种新的锂离子电池荷电状态估计方法。利用循环小脑模型神经网络(RCMNN)和卡尔曼滤波(KF)对循环单元的动态特征进行SOC估计。RCMNN和KF的输入包括电压、电流和温度,用于模拟ESS的一般情况。电池数据收集于福建省特种设备检验研究所。结果表明,该方法在不同条件下具有较好的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State of Charge Estimation for Lithium-ion Battery Using Recurrent Cerebellar Model Neural Network with Kalman Filter
The state of charge (SOC) is a crucial parameter for reflecting the battery's endurance. This study proposes the novel method of lithium-ion battery SOC estimation to ensure the working status of the energy storage system (ESS). Recurrent cerebellar model neural network (RCMNN) and Kalman filter (KF) are both applied for the SOC estimation that recurrent units can capture the dynamic features. The inputs of RCMNN and KF include voltage, current, and temperature for simulating the general situation of ESS. The battery data are collected in the Fujian Special Equipment Inspection and Research Institute. The results show that the accuracy and robustness of the proposed method under different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of High Speed Permanent Magnet Synchronous Motor Based on Co-simulation Method Multi-objective Hierarchical Optimal Scheduling of Microgrids with V2G Price Incentives Fast Intrusion Detection in High Voltage Zone of Electric Power Operations Based on YOLO and Homography Transformation Algorithm Stability Improvement Strategy of Distribution Network Based on Grid-Forming Mode Switching Time Series Based Co-optimization Model of Active and Reactive Power with PV-wind and Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1