使用上下文感知通信的车辆传感器数据资源高效传输

Benjamin Sliwa, T. Liebig, Robert Falkenberg, Johannes Pillmann, C. Wietfeld
{"title":"使用上下文感知通信的车辆传感器数据资源高效传输","authors":"Benjamin Sliwa, T. Liebig, Robert Falkenberg, Johannes Pillmann, C. Wietfeld","doi":"10.1109/MDM.2018.00051","DOIUrl":null,"url":null,"abstract":"Upcoming Intelligent Traffic Control Systems (ITSCs) will base their optimization processes on crowdsensing data obtained for cars that are used as mobile sensor nodes. In conclusion, public cellular networks will be confronted with massive increases in Machine-Type Communication (MTC) and will require efficient communication schemes to minimize the interference of Internet of Things (IoT) data traffic with human communication. In this demonstration, we present an Open Source framework for context-aware transmission of vehicular sensor data that exploits knowledge about the characteristics of the transmission channel for leveraging connectivity hotspots, where data transmissions can be performed with a high grade if resource efficiency. At the conference, we will present the measurement application for acquisition and live-visualization of the required network quality indicators and show how the transmission scheme performs in real-world vehicular scenarios based on measurement data obtained from field experiments.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource-Efficient Transmission of Vehicular Sensor Data Using Context-Aware Communication\",\"authors\":\"Benjamin Sliwa, T. Liebig, Robert Falkenberg, Johannes Pillmann, C. Wietfeld\",\"doi\":\"10.1109/MDM.2018.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upcoming Intelligent Traffic Control Systems (ITSCs) will base their optimization processes on crowdsensing data obtained for cars that are used as mobile sensor nodes. In conclusion, public cellular networks will be confronted with massive increases in Machine-Type Communication (MTC) and will require efficient communication schemes to minimize the interference of Internet of Things (IoT) data traffic with human communication. In this demonstration, we present an Open Source framework for context-aware transmission of vehicular sensor data that exploits knowledge about the characteristics of the transmission channel for leveraging connectivity hotspots, where data transmissions can be performed with a high grade if resource efficiency. At the conference, we will present the measurement application for acquisition and live-visualization of the required network quality indicators and show how the transmission scheme performs in real-world vehicular scenarios based on measurement data obtained from field experiments.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

即将推出的智能交通控制系统(itsc)将基于从用作移动传感器节点的汽车中获得的群体传感数据来优化过程。总之,公共蜂窝网络将面临机器类型通信(MTC)的大量增长,并将需要有效的通信方案,以最大限度地减少物联网(IoT)数据流量对人类通信的干扰。在本演示中,我们提出了一个用于车辆传感器数据上下文感知传输的开源框架,该框架利用有关传输通道特性的知识来利用连接热点,在这些热点中,数据传输可以以高质量的资源效率执行。在会议上,我们将展示用于采集和实时可视化所需网络质量指标的测量应用程序,并展示基于现场实验获得的测量数据的传输方案如何在实际车辆场景中执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource-Efficient Transmission of Vehicular Sensor Data Using Context-Aware Communication
Upcoming Intelligent Traffic Control Systems (ITSCs) will base their optimization processes on crowdsensing data obtained for cars that are used as mobile sensor nodes. In conclusion, public cellular networks will be confronted with massive increases in Machine-Type Communication (MTC) and will require efficient communication schemes to minimize the interference of Internet of Things (IoT) data traffic with human communication. In this demonstration, we present an Open Source framework for context-aware transmission of vehicular sensor data that exploits knowledge about the characteristics of the transmission channel for leveraging connectivity hotspots, where data transmissions can be performed with a high grade if resource efficiency. At the conference, we will present the measurement application for acquisition and live-visualization of the required network quality indicators and show how the transmission scheme performs in real-world vehicular scenarios based on measurement data obtained from field experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1