路由器配置异常的贝叶斯检测

Khalid El-Arini, Kevin S. Killourhy
{"title":"路由器配置异常的贝叶斯检测","authors":"Khalid El-Arini, Kevin S. Killourhy","doi":"10.1145/1080173.1080190","DOIUrl":null,"url":null,"abstract":"Problems arising from router misconfigurations cost time and money. The first step in fixing such misconfigurations is finding them. In this paper, we propose a method for detecting misconfigurations that does not depend on an a priori model of what constitutes a correct configuration. Our hypothesis is that uncommon or unexpected misconfigurations in router data can be identified as statistical anomalies within a Bayesian framework. We present a detection algorithm based on this framework, and show that it is able to detect errors in the router configuration files of a university network.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Bayesian detection of router configuration anomalies\",\"authors\":\"Khalid El-Arini, Kevin S. Killourhy\",\"doi\":\"10.1145/1080173.1080190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems arising from router misconfigurations cost time and money. The first step in fixing such misconfigurations is finding them. In this paper, we propose a method for detecting misconfigurations that does not depend on an a priori model of what constitutes a correct configuration. Our hypothesis is that uncommon or unexpected misconfigurations in router data can be identified as statistical anomalies within a Bayesian framework. We present a detection algorithm based on this framework, and show that it is able to detect errors in the router configuration files of a university network.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1080173.1080190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1080173.1080190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

路由器配置错误引起的问题耗费时间和金钱。修复这些错误配置的第一步是找到它们。在本文中,我们提出了一种检测错误配置的方法,该方法不依赖于构成正确配置的先验模型。我们的假设是,路由器数据中不常见或意外的错误配置可以被识别为贝叶斯框架内的统计异常。在此基础上提出了一种检测算法,并证明该算法能够检测出高校网络路由器配置文件中的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian detection of router configuration anomalies
Problems arising from router misconfigurations cost time and money. The first step in fixing such misconfigurations is finding them. In this paper, we propose a method for detecting misconfigurations that does not depend on an a priori model of what constitutes a correct configuration. Our hypothesis is that uncommon or unexpected misconfigurations in router data can be identified as statistical anomalies within a Bayesian framework. We present a detection algorithm based on this framework, and show that it is able to detect errors in the router configuration files of a university network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time monitoring of SIP infrastructure using message classification Authentication anomaly detection: a case study on a virtual private network SIP-based VoIP traffic behavior profiling and its applications Comparison of anomaly signal quality in common detection metrics Identifying and tracking suspicious activities through IP gray space analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1