Mehmet Akif Ozdemir, Onan Guren, Ozlem Karabiber Cura, A. Akan, Aytuğ Onan
{"title":"基于卷积神经网络的异常心电拍检测","authors":"Mehmet Akif Ozdemir, Onan Guren, Ozlem Karabiber Cura, A. Akan, Aytuğ Onan","doi":"10.1109/TIPTEKNO50054.2020.9299260","DOIUrl":null,"url":null,"abstract":"The heart is the most critical organ for the sustainability of life. Arrhythmia is any irregularity of heart rate that causes an abnormality in your heart rhythm. Clinical analysis of Electrocardiogram (ECG) signals is not enough to quickly identify abnormalities in the heart rhythm. This paper proposes a deep learning method for the accurate detection of abnormal and normal heartbeats based on 2-D Convolutional Neural Network (CNN) architecture. Two channels of ECG signals were obtained from the MIT-BIH arrhythmia dataset. Each ECG signal is segmented into heartbeats, and each heartbeat is transformed into a 2-D grayscale heartbeat image as an input for CNN structure. Due to the success of image recognition, CNN architecture is utilized for binary classification of the 2-D image matrix. In this study, the effect of different CNN architectures is compared based on the classification rate. The accuracies of training and test data are found as 100.00% and 99.10%, respectively for the best CNN model. Experimental results demonstrate that CNN with ECG image representation yields the highest success rate for the binary classification of ECG beats compared to the traditional machine learning methods, and one-dimensional deep learning classifiers.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Abnormal ECG Beat Detection Based on Convolutional Neural Networks\",\"authors\":\"Mehmet Akif Ozdemir, Onan Guren, Ozlem Karabiber Cura, A. Akan, Aytuğ Onan\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heart is the most critical organ for the sustainability of life. Arrhythmia is any irregularity of heart rate that causes an abnormality in your heart rhythm. Clinical analysis of Electrocardiogram (ECG) signals is not enough to quickly identify abnormalities in the heart rhythm. This paper proposes a deep learning method for the accurate detection of abnormal and normal heartbeats based on 2-D Convolutional Neural Network (CNN) architecture. Two channels of ECG signals were obtained from the MIT-BIH arrhythmia dataset. Each ECG signal is segmented into heartbeats, and each heartbeat is transformed into a 2-D grayscale heartbeat image as an input for CNN structure. Due to the success of image recognition, CNN architecture is utilized for binary classification of the 2-D image matrix. In this study, the effect of different CNN architectures is compared based on the classification rate. The accuracies of training and test data are found as 100.00% and 99.10%, respectively for the best CNN model. Experimental results demonstrate that CNN with ECG image representation yields the highest success rate for the binary classification of ECG beats compared to the traditional machine learning methods, and one-dimensional deep learning classifiers.\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abnormal ECG Beat Detection Based on Convolutional Neural Networks
The heart is the most critical organ for the sustainability of life. Arrhythmia is any irregularity of heart rate that causes an abnormality in your heart rhythm. Clinical analysis of Electrocardiogram (ECG) signals is not enough to quickly identify abnormalities in the heart rhythm. This paper proposes a deep learning method for the accurate detection of abnormal and normal heartbeats based on 2-D Convolutional Neural Network (CNN) architecture. Two channels of ECG signals were obtained from the MIT-BIH arrhythmia dataset. Each ECG signal is segmented into heartbeats, and each heartbeat is transformed into a 2-D grayscale heartbeat image as an input for CNN structure. Due to the success of image recognition, CNN architecture is utilized for binary classification of the 2-D image matrix. In this study, the effect of different CNN architectures is compared based on the classification rate. The accuracies of training and test data are found as 100.00% and 99.10%, respectively for the best CNN model. Experimental results demonstrate that CNN with ECG image representation yields the highest success rate for the binary classification of ECG beats compared to the traditional machine learning methods, and one-dimensional deep learning classifiers.