{"title":"Log - dem:用于运动目标检测的Log Gabor滤波和显性特征图方法","authors":"Gopalakrishna M T, M. Ravishankar, D. Babu","doi":"10.1109/ISDA.2012.6416600","DOIUrl":null,"url":null,"abstract":"In recent years, the numbers of Visual Surveillance systems have greatly increased, and these systems have developed into intellectual systems that automatically detect, track, and recognize objects in video. Automatic moving object detection and tracking is a very challenging task in video surveillance applications. In this regard, many methods have been proposed for Moving Object Detection and Tracking based on edge, color, texture information. Due to unpredictable characteristics of objects in foggy videos, the task of object detection remains a challenging problem. In this paper, we propose a novel scheme for moving object detection based on Log Gabor filter (LGF) and Dominant Eigen Map (DEM) approaches. Location of the moving object is obtained by performing connected component analysis. In turn, a Moving Object is Tracked based on the centroid manipulation. Number of experiments is performed using indoor and outdoor video sequences. The proposed method is tested on standard PETS datasets and many real time video sequences. Results obtained are satisfactory and are compared with existing well known traditional methods.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LoG-DEM: Log Gabor filter and Dominant Eigen Map approaches for moving object detection and\",\"authors\":\"Gopalakrishna M T, M. Ravishankar, D. Babu\",\"doi\":\"10.1109/ISDA.2012.6416600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the numbers of Visual Surveillance systems have greatly increased, and these systems have developed into intellectual systems that automatically detect, track, and recognize objects in video. Automatic moving object detection and tracking is a very challenging task in video surveillance applications. In this regard, many methods have been proposed for Moving Object Detection and Tracking based on edge, color, texture information. Due to unpredictable characteristics of objects in foggy videos, the task of object detection remains a challenging problem. In this paper, we propose a novel scheme for moving object detection based on Log Gabor filter (LGF) and Dominant Eigen Map (DEM) approaches. Location of the moving object is obtained by performing connected component analysis. In turn, a Moving Object is Tracked based on the centroid manipulation. Number of experiments is performed using indoor and outdoor video sequences. The proposed method is tested on standard PETS datasets and many real time video sequences. Results obtained are satisfactory and are compared with existing well known traditional methods.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LoG-DEM: Log Gabor filter and Dominant Eigen Map approaches for moving object detection and
In recent years, the numbers of Visual Surveillance systems have greatly increased, and these systems have developed into intellectual systems that automatically detect, track, and recognize objects in video. Automatic moving object detection and tracking is a very challenging task in video surveillance applications. In this regard, many methods have been proposed for Moving Object Detection and Tracking based on edge, color, texture information. Due to unpredictable characteristics of objects in foggy videos, the task of object detection remains a challenging problem. In this paper, we propose a novel scheme for moving object detection based on Log Gabor filter (LGF) and Dominant Eigen Map (DEM) approaches. Location of the moving object is obtained by performing connected component analysis. In turn, a Moving Object is Tracked based on the centroid manipulation. Number of experiments is performed using indoor and outdoor video sequences. The proposed method is tested on standard PETS datasets and many real time video sequences. Results obtained are satisfactory and are compared with existing well known traditional methods.