一种用于压缩视频目标跟踪的时空运动矢量滤波器

Ronaldo C. Moura, E. M. Hemerly
{"title":"一种用于压缩视频目标跟踪的时空运动矢量滤波器","authors":"Ronaldo C. Moura, E. M. Hemerly","doi":"10.1109/AVSS.2010.82","DOIUrl":null,"url":null,"abstract":"In this paper, a novel filter for real-time object trackingfrom compressed domain is presented and evaluated. Thefilter significantly reduces the noisy motion vectors, that donot represent a real object movement, from Mpeg familycompressed videos. The filter analyses the spatial (neighborhood)and temporal coherence of block motion vectorsto determine if they are likely to represent true motion fromthe recorded scene. Qualitative and quantitative experimentsare performed displaying that the proposed spatiotemporalfilter (STF) outperforms the currently widelyused vector median filter. The results obtained with the spatiotemporalfilter make it suitable as a first step of any systemthat aims to detect and track objects from compressedvideo using its motion vectors.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Spatiotemporal Motion-Vector Filter for Object Tracking on Compressed Video\",\"authors\":\"Ronaldo C. Moura, E. M. Hemerly\",\"doi\":\"10.1109/AVSS.2010.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel filter for real-time object trackingfrom compressed domain is presented and evaluated. Thefilter significantly reduces the noisy motion vectors, that donot represent a real object movement, from Mpeg familycompressed videos. The filter analyses the spatial (neighborhood)and temporal coherence of block motion vectorsto determine if they are likely to represent true motion fromthe recorded scene. Qualitative and quantitative experimentsare performed displaying that the proposed spatiotemporalfilter (STF) outperforms the currently widelyused vector median filter. The results obtained with the spatiotemporalfilter make it suitable as a first step of any systemthat aims to detect and track objects from compressedvideo using its motion vectors.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种新的压缩域实时目标跟踪滤波器,并对其进行了评价。该滤波器显著减少了Mpeg家族压缩视频中不代表真实物体运动的噪声运动向量。该滤波器分析块运动矢量的空间(邻域)和时间相干性,以确定它们是否可能代表记录场景中的真实运动。定性和定量实验表明,所提出的时空滤波器(STF)优于目前广泛使用的矢量中值滤波器。使用时空滤波器获得的结果使其适合作为任何系统的第一步,旨在利用其运动向量从压缩视频中检测和跟踪对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Spatiotemporal Motion-Vector Filter for Object Tracking on Compressed Video
In this paper, a novel filter for real-time object trackingfrom compressed domain is presented and evaluated. Thefilter significantly reduces the noisy motion vectors, that donot represent a real object movement, from Mpeg familycompressed videos. The filter analyses the spatial (neighborhood)and temporal coherence of block motion vectorsto determine if they are likely to represent true motion fromthe recorded scene. Qualitative and quantitative experimentsare performed displaying that the proposed spatiotemporalfilter (STF) outperforms the currently widelyused vector median filter. The results obtained with the spatiotemporalfilter make it suitable as a first step of any systemthat aims to detect and track objects from compressedvideo using its motion vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1